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Acoustic power transfer: Example applications
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Acoustic power transfer: Basic system components
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Research challenges

« Power losses due to:

Reflections (electrical and acoustic impedance mismatch)

« Beam divergence, diffraction, etc.
Medium absorption

« Strong multi-physics coupling (modeling challenges)
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Equally weighted sum of design criteria

arbitrary units
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Work Objective

* Investigate the analytical models for modeling fluid loaded 33-mode
bulk piezoelectric transducers.

 Determine the effect of changing the height-to-radius (aspect ratio

B = "/a) on the performance of PZT receivers.
h
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Constitutive equations for a 33-mode transducer

» Piezoelectric equations:

oc=CES—e'E
D =eS + €E
 For a thickness-poled cylinder: + V-

or = C115y + C1259 + (135, — e31E;
0g = C125r + Ca259 + C135;, — €31 E;
0z = C138y + (1359 + (335, — e33E;
Orz = C445r2

09z = C14502

org = ((C11 — C12)/2) Spg

D, =Dg=0

D, = e3;15: + e3159 + e335, + €33E;
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Various theories for analytic modeling

Thin rod (classical)

Basis for equivalent
electrical circuits (Mason,
KLM, ....,etc)

Assumptions:

All lateral stresses and
shear stresses negligible

0y = 09 = Oyz; = Ogz = Oyg
=0
u, = u(zt)

Z
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Rayleigh Bishop

Add shear stresses to
Rayleigh

All shear stresses
negligible:

Opz = Ogz = Org = 0

Include the effects of lateral inertia:

u, =u(zt)
du,
U, = —=Vr
r dz

_ ;
——
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Thin plate

Basis for equivalent
electrical circuits (Mason,
KLM, ....,etc)

Assumptions:

All lateral and shear
strains are negligible:

Sy = S9 = Srz = S9z = Sr@
=0
u, = u(z,t)
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. . . » Electromechanical EOMs
Piezoelectric equations Hamilton’s

+ principle « Mechanical BCs (continuity equations)
Simplifying assumptions

v

« Electric BCs

L2 For a thin rod:
§(T—U+We+Wy)dt=0 Electromechanical EOMs:

pu®d(z,t) — Cu®9(z,t) + 8@ (z,t) = 0
eu@9(z,t) —ep@0(z,t) =0
Mechanical BCs:
A, ((‘: w0 (0, 1) + & L0 (0, t)) +P=0
Electric BCs:
Ap(éu(l'o) (0,t) — E_qb(l'O)(O, t)) —Q0=0

tq

1
VVe =_jE3D3dV
2 |74

Wnc = j(frur + feue + Ezuz - C_[(P)dS
S




Coupling fluid acoustics with transducer dynamics

« Assume wave solution: By LV
Pl(t) — Alej(a)t—kzl) + Blej(wt+kzl) Av\
P,(t) = Azef(wt—kzz) + Bzef(wt+kzz)
) A
V(t) — (Av + Bv)e]wt _1
: : .. B,
 Substitute in boundary conditions and rearrange —
in scattering matrix form:
B, Si1 Si2 Siz| 4 4 E('ﬁfmca'
By| = [S2a1 S22 Saz||Az ’ T
B, _531 532 533_ Ay P, P,
O— Transducer —O
1 2
Acoustic Acoustic 9
port 1 port 2 ,
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Case studies & comparison to experiments
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Electromechanical impedance (in air)
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Case studies & comparison to experiments

Electromechanical impedance (in fluid)
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Acoustic wave field (baffled transmitter)
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Power [MW]

Further investigation of acoustic power flow

Freg=41 kHz, RI=5 k2
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» Various theories for analytical modeling of thickness vibration are
examined and compared to predict the frequency response.

« Enhanced models (e.g. Rayleigh, Bishop) can be used to correct for
baffled transmitters response with aspect ratio g > 3.

 Analytical models analyzed cannot be used for high accuracy to
predict the power output from a moderate aspect ratio transducer
(finite-element analysis may become necessary).

* Power output analysis is also conducted along with an account of
directivity and power flow.
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