Georgia Tech

CREATING THE NEXT

Comparison of various models for piezoelectric receivers in wireless acoustic power transfer

Ahmed Allam, Karim Sabra and Alper Erturk

G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology

Acoustic power transfer: Example applications

Power transmission to pipeline monitoring sensors

Acoustic power transfer: Basic system components

3/5/2019

Research challenges

- Power losses due to:
 - Reflections (electrical and acoustic impedance mismatch)
 - Beam divergence, diffraction, etc.
 - Medium absorption
- Strong multi-physics coupling (modeling challenges)

Work Objective

- Investigate the analytical models for modeling fluid loaded 33-mode bulk piezoelectric transducers.
- Determine the effect of changing the height-to-radius (aspect ratio $\beta = \frac{h}{a}$) on the performance of PZT receivers.

Constitutive equations for a 33-mode transducer

• Piezoelectric equations:

$$\sigma = \mathbf{C}^{E}S - e^{T}E$$
$$D = \mathbf{e}S + \mathbf{\epsilon}^{S}E$$

• For a thickness-poled cylinder: $\sigma_{r} = C_{11}s_{r} + C_{12}s_{\theta} + C_{13}s_{z} - e_{31}E_{z}$ $\sigma_{\theta} = C_{12}s_{r} + C_{22}s_{\theta} + C_{13}s_{z} - e_{31}E_{z}$ $\sigma_{z} = C_{13}s_{r} + C_{13}s_{\theta} + C_{33}s_{z} - e_{33}E_{z}$ $\sigma_{rz} = C_{44}s_{rz}$ $\sigma_{\theta z} = C_{44}s_{\theta z}$ $\sigma_{r\theta} = ((C_{11} - C_{12})/2) s_{r\theta}$ $D_{r} = D_{\theta} = 0$ $D_{z} = e_{31}s_{r} + e_{31}s_{\theta} + e_{33}s_{z} + \epsilon_{33}E_{z}$

3/5/2019

Various theories for analytic modeling

Thin rod (classical)

Basis for equivalent electrical circuits (Mason, KLM,,etc)

Assumptions:

3/5/2019

All lateral stresses and shear **stresses** negligible

$$\sigma_{r} = \sigma_{\theta} = \sigma_{rz} = \sigma_{\theta z} = \sigma_{r\theta}$$
$$= 0$$
$$u_{z} = u(z, t)$$

Rayleigh

All shear **stresses** negligible: $\sigma_{rz} = \sigma_{\theta z} = \sigma_{r\theta} = 0$

Rayleigh

Include the effects of lateral inertia:

 $u_z = u(z,t)$

$$u_r = -\nu \ r \frac{du_z}{dz}$$

Bishop

Add shear stresses toBasis forRayleighelectrical

Basis for equivalent electrical circuits (Mason, KLM,,etc)

Thin plate

Assumptions:

All lateral and shear **strains** are negligible:

$$s_r = s_{\theta} = s_{rz} = s_{\theta z} = s_{r\theta}$$

= 0
$$u_z = u(z, t)$$

$$z_{\tau}$$

Solution approach

Piezoelectric equations + Simplifying assumptions

Hamilton's principle $\int_{t_1}^{t_2} \delta \left(T - U + W_e + W_{nc}\right) dt = 0$

 $W_e = \frac{1}{2} \int_V E_3 D_3 dV$

 $W_{nc} = \int_{S} (\bar{t}_r u_r + \bar{t}_{\theta} u_{\theta} + \bar{t}_z u_z - \bar{q}\phi) dS$

- Mechanical BCs (continuity equations)
- Electric BCs

For a thin rod: Electromechanical EOMs: $\rho u^{(0,2)}(z,t) - \overline{C}u^{(2,0)}(z,t) + \overline{e}\phi^{(2,0)}(z,t) = 0$ $\overline{e}u^{(2,0)}(z,t) - \overline{e}\phi^{(2,0)}(z,t) = 0$ Mechanical BCs: $-A_p(\overline{C}u^{(1,0)}(0,t) + \overline{e}\phi^{(1,0)}(0,t)) + P = 0$ Electric BCs: $A_p(\overline{e}u^{(1,0)}(0,t) - \overline{e}\phi^{(1,0)}(0,t)) - Q = 0$

Coupling fluid acoustics with transducer dynamics

Assume wave solution:

 $P_{1}(t) = A_{1}e^{j(\omega t - kz_{1})} + B_{1}e^{j(\omega t + kz_{1})}$ $P_{2}(t) = A_{2}e^{j(\omega t - kz_{2})} + B_{2}e^{j(\omega t + kz_{2})}$ $V(t) = (A_{v} + B_{v})e^{j\omega t}$

• Substitute in boundary conditions and rearrange in **scattering matrix** form:

$$\begin{bmatrix} B_1 \\ B_2 \\ B_\nu \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \\ A_\nu \end{bmatrix}$$

3/5/2019

Electrical power frequency response (for RX)

13

Tech CREATING THE NEXT

Georaia

SPIE Smart Structures + Nondestructive Evaluation 2019, Denver, Colorado

D

Further investigation of acoustic power flow

Power [µW]

Summary and conclusion

- Various theories for analytical modeling of thickness vibration are examined and compared to predict the frequency response.
- Enhanced models (e.g. Rayleigh, Bishop) can be used to correct for baffled transmitters response with aspect ratio $\beta > 3$.
- Analytical models analyzed cannot be used for high accuracy to predict the power output from a moderate aspect ratio transducer (finite-element analysis may become necessary).
- Power output analysis is also conducted along with an account of directivity and power flow.

Acknowledgment

 This material is based upon work supported by the National Science Foundation under Grant No.(1727951)

Thanks!.. Questions?

