

22nd International Congress on Acoustics Buenos Aires, Argentina 5 – 9 September, 2016

Acoustics for the 21st Century...

Characterization of Mufflers

Ahmed Allam and Tamer Elnady

Ain Shams University, Egypt

Contents

- Motivation
- Two-source technique
- Problem statement
- Solution approach
- Optimized algorithm for stepped sine excitations
- Simultaneous excitation
- Validation setup
- Results
- Summary

22nd International Congress on Acoustics September, Argentina, **Buenos Aires,**

Motivation

- Mufflers are devices used to reduce noise emitted from different fluid machines
- They have to be tailored to each machine
- Tailoring means that we need simulation tools and measurement techniques to validate the models.

Motivation

- Measurements are done in universities, Research Institutes and Companies
- They are repeated regularly
- Requirements:
 - Standardize the procedure
 - Minimize the time to conduct one measurement
 - Make it easy for everyone to do the test

The acoustic two port theory

The wave propagation inside an acoustic element (muffler) can be described by the scattering matrix formulation:

$$\begin{bmatrix} p_{a+} \\ p_{b+} \end{bmatrix} = \begin{bmatrix} R_{11} & T_{12} \\ T_{21} & R_{22} \end{bmatrix} \begin{bmatrix} p_{a-} \\ p_{b-} \end{bmatrix} + \begin{bmatrix} p_{a+}^{s} \\ p_{b+}^{s} \end{bmatrix}$$

Two source technique

 It is a technique which is widely used to characterize mufflers using stepped sine excitations especially in the presence of flow

Fig. 1: Typical two source setup

The two source technique

Fig. 2: Two-source setup schematic

$$\begin{bmatrix} p_{a+} \\ p_{b+} \end{bmatrix} = \begin{bmatrix} R_{11} & T_{12} \\ T_{21} & R_{22} \end{bmatrix} \begin{bmatrix} p_{a-} \\ p_{b-} \end{bmatrix} + \begin{bmatrix} p_{a+}^s \\ p_{b+}^s \end{bmatrix}$$

Wave Decomposition Two-microphone Technique

 Two-microphone wave decomposition techniques used to determine downstream and upstream propagating waves.

- Frequency Range?
 - Limitation 1: Plane waves inside the pipe $\rightarrow f_{\rm u} < 0.58 \ c_0/d$
 - Limitation 2: Microphone spacing $\rightarrow 0.1\pi(1-M^2) < ks < 0.8\pi(1-M^2)$

The two source technique

It can be used to estimate the acoustic performance of a muffler by measuring the:

- Elements of the scattering matrix
- Transmission loss

$$TL = 10\log_{10}\left[\frac{(1+M_k)^2 Z_l}{(1+M_l)^2 4Z_k} \left| T_{red,11} + \frac{T_{red,12}}{Z_l} + Z_k T_{red,21} + \frac{T_{red,22} Z_k}{Z_l} \right|^2\right]$$

Insertion loss

$$IL = 10\log_{10} \left[\frac{T_{red,11}Z^{ls} + T_{red,12} + Z^{ks} \left(T_{red,21}Z^{ls} + T_{red,22}\right)^{2}}{T_{red,11}^{ref}Z^{ls} + T_{red,12}^{ref} + Z^{ks} \left(T_{red,21}^{ref}Z^{ls} + T_{red,22}^{ref}\right)^{2}} \right]$$

Noise reduction

Problem statement

- The evaluation of the acoustic performance of a muffler using stepped sine measurements takes a considerable amount of time
- We introduce a new platform to automate the twosource technique which:
 - Reduces the time required to perform stepped sine measurements
 - Maintain the accuracy provided by traditional platforms

10

Solution approach

- The measurement time is reduced by developing a new platform which:
 - Introduces a new acquisition algorithm to optimize the measurement time
 - Implements simultaneous upstream and downstream stepped sine excitation

Construction of the new platform

Optimized acquisition algorithm

Reference algorithm:

- The sampling rate is fixed and depends on the maximum frequency to be excited
- The data window size is determined by the desired frequency step size
- The excitation is stopped between each two frequency steps

Optimized algorithm:

- The sampling rate depends on the frequency being excited
- The data window size is fixed
- The excitation is kept between each two frequency steps, only the frequency is changed

Simultaneous excitation

- Traditionally only one speaker (upstream or downstream) is excited at a time
- Simultaneous excitation involves exciting both upstream and downstream speakers at the same time but at different frequencies:

September, 2016 22nd International Congress on Acoustics **O** Ŋ Argentina, **Buenos Aires,**

Conventional vs. Optimized Acquisition

Algorithm validation

The results obtained by the following methods were compared:

- The new platform with:
 - Optimized acquisition algorithm
 - Optimized algorithm and simultaneous excitation
- SIDLAB commercial software
- Analytic simulations using the acoustic two port theory

Validation setup

Test Cases:

- Straight pipe (L=1 m, D=50 mm)
- Dissipative muffler (L=0.5m, D_i=50 mm, D_o=99 mm, 20% porosity)

Fig. 3: Schematic for the dissipative muffler

Fig. 4: The used test setup for validation

Straight pipe results

(a) Without flow

(b) With flow (M=0.1)

Fig. 5: Real and imaginary components of S_{12} estimated using simultaneous stepped sine (— Real part and — - Imaginary part), white noise (— Re and — - Im), optimized single-sided stepped sine (— Re and — - Im), conventional stepped sine excitations (— Re and — - Im) and analytically (— Re and — - Im)

Dissipative muffler results

(a) Without flow

(b) With flow (M=0.1)

Fig. 6: TL of the dissipative muffler estimated using — simultaneous stepped sine, — • white noise, — optimized single-sided stepped sine, — • conventional stepped sine excitations and — analytically

Time improvements

The total acquisition time (t_a) taken by the different acquisition algorithms within a frequency range between 200 and 1100 Hz, a step of 10Hz and 100 averages was measured to be:

Acquisition algorithm	t_a (min)	Speed Gain
Conventional	32.0	-
Optimized	9.1	3.5
Optimized with simultaneous excitation	6.0	5.3

Summary

- A new platform for the automation of two source acoustic measurements is introduced and validated
- The new platform minimizes the time needed to perform the measurements without affecting their quality
- The new platform can be as much as 5 times faster than reference implementations

