Georgia Tech

CREATING THE NEXT

Double Phononic Crystal Lens-Based Enhancement of Underwater Power Transfer

<u>Ahmed Allam</u>, Karim Sabra, and Alper Erturk

G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology

181st ASA meeting, Seattle, WA

Motivation for Acoustic Power Transfer (APT)

Power and data transmission through metallic walls

Leung et al., in 9th IEEE Conf. on Ind. Elec.& App. (2014).

Song et al., IEEE Trans. on Biomed. Eng. (2015).

Seo et al., J. Neurosci. Methods (2015).

Ocean monitoring and navigation

Guida et al., in. IEEE Trans. on Mob. Comp. (2020).

2

CREATING THE NEXT

Ghaffarivardavagh *et al.*, in *SIGCOMM*. (2020).

Underwater Power Transfer

Jang and Adib, in *Proc. of the ACM* (2019).

Guida et al., in. IEEE Trans. on Mob. Comp. (2020).

Endpoint Computers. Application, ater Layo Routers. Transport, RF, Cables, or Network, Fiber-Optics Switches, Data Link Modems, HUBs. and ð Physical and Repeaters Wired or Cables or Physical Wireless Fiber-Optics Data Link Repeaters. and HUBs, and Network Modems Gateways. Acoustic Under Endpoint Transport and Sensors. Ph Application and Actuators

Schematic

Equipment

Jahanbakht *et al., IEEE Comm. Surv. Tut.* (2021).

- Recent interest in creating the underwater internet of things for ocean monitoring, underwater navigation, and marine life tracking.
- Proposed systems use SONAR frequencies below 100 kHz for transmitting power.

IoUT

RAT54 dior

Energy Management Unit

TCP/IP

Ghaffarivardavagh et al., in Proc. Of 19th ACM Workshop on Hot Topics in Networks (2020).

APT Challenges: Divergence, Attenuation and Reflection

Lower frequency

Higher frequency

Operating at lower frequency reduces attenuation but increases divergence losses.

Gradient Index Phononic Crystals (GRIN-PCs)

Xie et al. Sci. Rep. (2018).

GRIN-PCs reduce divergence losses through wave focusing.

GRIN-PCs for Focusing Ultrasonic Waves under Water

- We recently developed an underwater GRIN-PC lens for focusing ultrasonic waves around 100 kHz.
- Our main concern was to focus the energy at the receiver.

Allam, Sabra, & Erturk , Phys. Rev. Applied (2020).

Experimental pressure field

6

Georg

CREATING THE NEXT

Wave Collimation

- Dolphins use a point source to generate their echolocation clicks.
- The melon acts as a gradient index lens to collimate the generated beam from a point source (the phonic lips).

Wei et al., PLOS ONE.(2020).

Song et al., Appl. Phys. Lett.(2020).

Using Two Lenses to Enhance Power Transfer (Ideal Case)

- Our proposed Power Transfer system leverages:
 - 1. A GRIN-PC lens at the transmitter to collimate the waves towards the receiver.
 - 2. A second lens focuses incident waves at the receiver.

 Raytracing assumes waves travels as rays which is only valid when the lens aperture is much larger than the wavelength.

Using Two Lenses to Enhance Power Transfer (Practical Case)

• Using a frequency domain finite element model to simulate the pressure field:

- The source lens improves the directivity of the source.
- The finite aperture of the lens limits the directivity of the beam.

Effect of Lens Aperture on Collimation

- Larger lens aperture yields a more collimated beam.
- The source/lens is approximately a piston radiator with the same aperture.

Georgia Tech M

CREATING THE NEXT

Experimental Results

Power Enhancement for Omnidirectional TX and Rx

- The double lens system is characterized using an acoustic tank.
- The Tx hydrophone is excited by a wide band pulse centered around 90 kHz.
- The Rx hydrophone is connected to an oscilloscope for measuring the output voltage.

Enhancing Power Transfer for Low Directivity Transducers

• The GRIN-PC lens enhances the directivity of transducers with small apertures.

Power Enhancement for a Practical System

- The distance between the lenses is limited by the tank size to 19 cm (~11λ).
- The output voltage is measured on the optimum resistance of the receiver (2.8 $k\Omega$).

- The peak output power of the system increased from 480 μ W to 5.7 mW when the lenses were introduced.

14 CREATING THE NEXT

Geor

Conclusions and Future Work

- GRIN-PC lenses enhance the efficiency of acoustic power transfer systems by:
 - Collimating waves generated from TX
 - Focusing waves on RX
- Wave collimation was limited by the finite aperture of the lens.
- The GRIN-PC enhanced system transmitted 5.7 mW of electric power compared to 480 $\mu\rm W$ without the lenses.
- Future Work: explore a broader parameter space in terms of distances, mediums, and geometry with respect to wavelength.

Acknowledgement: This material is based upon work supported by the National Science Foundation under Grant No. 1727951.

Georgia Tech

CREATING THE NEXT

Thanks!

Questions?