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Summary

Acoustic metamaterials (AMM) are artificial materials with engineered sub-wavelength

structures that possess acoustic material properties which are not readily available in

nature. The material properties of AMMs can be manipulated by embedding active

elements inside their structure (active AMMs). This manipulation of properties is done

by an external voltage signal and is hardly available in any natural material.

In this work, existing designs for passive and active AMMs are reviewed and summarized.

Existing homogenization techniques for the material properties of passive metamaterials

are investigated and extended to be applied for active AMMs. Three new designs for

active plate-type AMM with tunable density are proposed and verified analytically,

numerically and experimentally.

The first design is a one dimensional (1D) AMM consisting of clamped piezoelectric

disks in air. The effective density of the material is controlled by an external static

electric voltage. An analytic model based on the acoustic two-port theory, the theory

of piezoelectricity and the pre-stressed thin plate theory is developed to predict the

behavior of the material. The results are verified using the finite element method.

Excellent agreement is found between both models for the studied frequency and voltage

ranges. The results show that the density is tunable within orders of magnitude relative

to the uncontrolled case. This is done with a limited effect on the bulk modulus of the

material. The results also suggest that simple controllers could be used to program the

material density.

The first design was modified and extended to construct a two-dimensional AMM with

controllable anisotropic density. The modified design consists of composite lead-lead

zirconate titanate (PZT) plates clamped to an aluminum structure with air as the back-

ground fluid. The effective anisotropic density of the material is controlled, indepen-

dently for two orthogonal directions, by means of an external static electric voltage

signal. An analytic model based on the acoustic two-port theory, the theory of piezo-

electricity, the laminated pre-stressed plate theory is developed to predict the behavior

of the material. The results are verified also using the finite element method. Excellent

agreement is found between both models for the studied frequency and voltage ranges.

The results show that, below 1600 Hz, the density is controllable within orders of mag-

nitude relative to the uncontrolled case. A reconfigurable wave guide was constructed

using the developed material and its performance was evaluated numerically and an-

alytically. The waveguide can control the direction of the acoustic waves propagating

through it.



x

The results obtained from the previous models were used to construct and experimentally

verify a third design with a fully real-time controllable effective density. The effective

density of the AMM can be programmed and set to any value ranging from -100 kg/m3 to

100 kg/m3 passing by near zero density conditions. This is done through an interactive

graphical user interface and is achievable for any frequency between 500 and 1500 Hz.

The modified design consists of clamped composite piezoelectric diaphragms suspended

in air. The dynamics of the diaphragms are controlled by connecting a closed feedback

control loop between the piezoelectric layers of the diaphragm. The density of the

material is adjustable through an outer adaptive feedback loop that is implemented by

the real-time estimation of the density of the material using the 4-microphone technique.

Applications for the new material include programmable active acoustic filters, non-

symmetric acoustic transmission and programmable acoustic superlens.

Keywords : Acoustic metamaterials, Piezoelectric materials, Feedback control,

Adaptive control
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Chapter 1

Literature Review

1.1 Introduction to Acoustic metamaterials (AMM)

Metamaterials are the current focus of a lot of theoretical and experimental work in the

fields of electromagnetic, acoustic and elastic wave propagation. They are defined as

materials which possess material properties not readily available in nature. To be more

specific, the material properties here are those that directly affect the propagation of

energy waves inside the material. For electromagnetic waves, they are the permittivity

(ǫ) and the permeability (µ), for acoustic waves they are the mass density ρ and the bulk

modulus B, and for elastic waves they are mass density and the elastic modulus (E).

For traditional materials, these properties are always positive and are usually isotropic;

however, in metamaterials and specifically from the point of view of wave propagation

they can have any sign combination. The origin of the concept of metamaterials dates

back to 1968 when Veselago[1] imagined the consequences of an electromagnetic material

having simultaneous negative permittivity and permeability. He discussed the unusual

phenomena such as reverse Doppler effect and reverse Snell’s law. At the time of his

publication Veselago admitted that there weren’t any experimental observations that

suggest that such material could exist; however, he discussed several approaches for

achieving this. 30 years later, Pendry and his colleagues succeeded in manufacturing

materials with negative ǫ /positive µ [2] and positive ǫ/ negative µ [3]. Later on, Smith

et al. succeeded in manufacturing the first double negative metamaterial (DNG)[4].

Pendry and Smith did not discover a physical material as Veselago had predicted, they

rather engineered structures with feature length much smaller than the wavelength of the

1
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waves propagating through them. These structures could be thought of as effectively

homogeneous materials with extraordinary material properties (metamaterials). The

structures of the first proposed materials are shown in Figure 1.1. Roughly the same

year, Liu et al. succeeded in manufacturing the first acoustic metamaterial (AMM)[5].

They used a sub-wavelength structure consisting of hard lead balls coated with soft

rubber (Figure 1.2). They claimed that their material could achieve a negative elastic

modulus due to the vibration of the lead balls in the rubber. They also demonstrated

that their material could break the mass law which states that the sound insulation of

ordinary materials, sound transmission loss (TL), increases by 6 decibels (dB) for each

doubling of the mass of the material or frequency[6].

(a)

p

z
(b)

p

y

(c)

x
y

z

Figure 1.1: Construction of the first proposed metamaterials. (a) Thin wire structure
exhibiting negative ǫ /positive µ, (b)split ring resonators exhibiting negative µ/ positive
ǫ and (c) double split ring resonator exhibiting double negativity. Taken from (Ref.[7]).

Since then different structure designs for AMM have been suggested, studied and exper-

imentally validated. These designs can be classified into resonant AMM which depends

on the presence of subwavelength local resonators embedded in the structure of the

material, phononic crystal AMM which depends on the multiple scattering effects of
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subwavelength scatterers and space coiling AMM which depends on the effect of con-

structing a subwavelength maze-like structure to delay the acoustic waves propagating

through it.

Figure 1.2: Construction of the (a) unit cell and (b) structure of the first proposed
AMM consisting of silicon rubber coated lead balls in an epoxy matrix. Taken from

(Ref.[5]).

1.2 Sign Interpretation

Considering an acoustic pressure wave traveling through a homogeneous loss-less sta-

tionary fluid, the behavior of the wave could be described by the linearized equations of

conservation of mass and conservation of momentum which are given by:

ρ
∂ū

∂t
+∇p = 0 (1.1a)

1

B

∂p

∂t
+∇.ū = 0 (1.1b)

where p is the acoustic pressure, ū is the acoustic particle velocity vector, ρ,B are

the density and compressibility of the fluid, ∇ is the gradient operator and (∇.) is the

divergence operator. If we are to consider harmonic fields with time dependence, ejωt

then we could write:

ū(r̄, t) = ū(r̄)ejωt (1.2a)

p(r̄, t) = p(r̄)ejωt (1.2b)
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Substituting in Equation 1.1 and rearranging we arrive to:

ū(r̄) =
j

ωρ
∇p(r̄) (1.3a)

p(r̄) =
jB

ω
∇.ū(r̄) (1.3b)

For simplicity without loss of generality we will consider the previous equations in one

dimension (z) hence:

u = j
1

ωρ

dp

dz
(1.4a)

p = j
B

ω

du

dz
(1.4b)

These equations show the mechanism behind acoustic wave propagation in fluids. For

traditional materials (ρ,B) are both positive. Hence Spatial pressure gradients in Equa-

tion 1.4a induce velocity fields whose spatial gradients in turn produces pressure fields in

Equation 1.4b. The mechanism repeats as long as the wave propagates in the medium.

If we take the divergence of Equation 1.3a and substitute into Equation 1.3b we arrive

to the famous Helmholtz wave equation:

∇2p+
ω2

c2
p = 0 (1.5)

where c is the speed of sound propagation in the fluid medium and is given by:

c2 =
B

ρ
, c = ±

√
B

ρ
(1.6)

For a plane wave traveling in z direction, the solution of Equation 1.5 is well known and

is given by:

p(z) = Ae−jkz +Bejkz (1.7)

which represents two waves traveling in the positive and negative directions of z with a

wave number k given by:

k =
ω

c
(1.8)

For a traditional medium (ρ,B) are both positive and frequency independent hence c

is positive and constant and k is always positive. Metamaterials on the other hand
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can be synthesized to have effective density ρeff and bulk’s modulus Beff with dif-

ferent sign combinations at specific frequency bands. The possible sign combinations

for (ρ,B) is Traditional Materials (TM)(+,+), Single Negative Metamaterials (SNG)

(+,−)or(−,+) and Double Negative Metamaterials (DNG) (−,−). The behavior of

traditional materials is well known so we will examine the other sign combinations.

1.2.1 Single Negative Metamaterials (SNG)

The behavior of SNG is almost the same for whether (ρ,B) are (−,+) or (+,−). In

either case, the speed of sound in the medium, Equation 1.6, is imaginary and hence the

wave number (k). The presence of an imaginary wave number in Equation 1.7 produces

real exponentials and hence evanescent wave propagation. This leads to the presence of

band gaps in the SNG in which the acoustic waves cannot propagate. The mechanism

behind this phenomenon is clear in Equation 1.4. Pressure gradients induces particle

velocities whose direction depends on the magnitude and sign of (ρ,B) if we assume

(ρ < 0, B > 0) then the induced particle velocities will induce pressure fields such that

they oppose the fields producing them and hence the wave propagation decays.

1.2.2 Double Negative Metamaterials (DNG)

In case of DNG the situation is different. Since (ρ,B) are both negative then the speed

of sound c is real but negative. The negative sign here is with respect to the direction

of energy propagation. For traditional non-dispersive materials, c represents the phase

speed of acoustic waves as well as their group velocity (i.e. speed of propagation in the

medium). The group velocity for DNG is given by:

vg = (
dk

dω
)−1 =

d

dω
(

ω

c(ω)
) (1.9)

Since c is function of ω, then vg is no longer equal to c and c is no longer representing

the speed of propagation of the acoustic wave in the medium. The fact that c is negative

doesn’t mean that the waves are propagating towards the source rather than the direction

of the phase propagation is opposite to that of energy propagation.
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1.3 Classification of AMM

1.3.1 Resonant AMM

Resonant AMMs were the first type of AMMs to be realized [5]. They are also the most

common type of AMM. Resonant AMM are constructed by creating a metamaterial

cell with one or more resonators. These resonators could be mechanical resonators in

the form of vibrating elastic objects or acoustic resonators like Helmholtz resonators or

quarter wavelength resonators. The material is formed by repeating this unit cell in one

or more dimensions. Its properties are studied as if it was a single homogeneous material.

The presence of such resonators could produce materials whose acoustic properties are

very different from the properties of its individual components. To demonstrate this,

we will study a material consisting of a mass (M)- spring (k)- damper (b) resonator.

Assuming an incident acoustic pressure wave on the one dimensional (1D) mechanical

resonator shown in Figure 1.3, the acoustic pressure waves will induce a harmonic force

f(t) acting on the system. The vibration of this resonator is of the form:

Mẍ+ bẋ+ kx = f(t) (1.10)

Assuming that the dimensions of the resonator is so small that it is considered as a

b
k

M

f(t)

x

Figure 1.3: A simple mass spring damper system.

material with only an effective mass Meff . This effective mass can be calculated from

the relation m = f
a
. This can be done by converting Equation (1.10) to the frequency
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domain using Laplace transform:

F (s)

A(s)
=

Ms2 + bs+ k

s2
= Meff (s) (1.11)

Equation (1.11) shows that the effective mass of the material formed from this resonator

is not constant, but depends on the frequency of the incident acoustic excitation. Fig-

ure 1.4 shows a Bode plot of a material formed from such resonator. Below the resonance

frequency of the resonator, the phase of Meff is −180 deg which indicates that the effec-

tive mass is, in fact, negative. This is observed, even though all the system properties of

the resonator are positive and can be achieved with any ordinary material organized to

behave as the resonator in Figure 1.4. Resonant AMM can be further classified depend-

Figure 1.4: Bode plot of the effective mass of the system shown in Figure 1.3 with
M = 1, k = 1, b = 0.01.

ing on the resonator type used to create the material. Resonators can be classified to

monopolar and dipolar resonators depending on their interaction with the propagating

acoustic waves. The classification of dipolar and monopolar resonators depends on the

interaction of the resonator with the background fluid as shown in Figure 1.5. It is

observed that the presence of a dipolar resonator in the structure of the material affects

mainly its effective density, while monopolar resonators affect its bulk modulus. So usu-

ally, if it is desired to fabricate DNG metamaterial, both types of resonators are used in

the construction of the material at the same time.
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1D Dipolar resonance 1D Monopolar resonance

(a) (b)

Figure 1.5: Comparison between resonators with (a) dipolar resonance and (b)
monopolar resonance . The neutral position is shown with the dotted line while the
resonator is represented by a block. The arrows represents the direction motion of the
block in case of the monopolar resonator and the direction of deformation of the block

in case of the dipolar resonator.

1.3.1.1 Mass-in-mass AMM

The term mass-in-mass AMM normally refers to the type of AMMs formed by construct-

ing an array of cells consisting of a combination of light material with high elasticity

and dense materials with low elasticity. This was first demonstrated by Liu et al.[5],

when they fabricated the first AMM. They constructed their material from dense lead

balls coated with a silicon rubber shell, and used epoxy as a hard background material

to join the balls. The experimental estimation of the TL of such material was found

to be exceptionally large at frequencies near the resonance of the lead/rubber balls.

They attributed this behavior to the assumption that their material achieved a neg-

ative effective bulk modulus; however, they didn’t provide any theoretical details or

quantitative estimation of the effective acoustic properties of their material. It wasn’t

until later, that they showed analytically that a material with such construction could

only achieve negative effective density but not negative effective bulk modulus as they

originally speculated[8, 9]. Ding et al.[10] proposed a design for a DNG metamaterial.

The design consisted of an epoxy background matrix that contains a face centered cube

(FCC) array of spheres made of water and another FCC array made from gold rub-

ber coated spheres. The gold rubber coated spheres, being a dipolar resonator, would
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achieve negative effective density, while the water spheres, being a monopolar resonator,

would cause the bulk modulus to be negative at certain frequency regions. The concept

of mass-in-mass in AMM was later extended to elastic wave propagation[11–13]. This

includes experimentally evaluating physical mass-spring systems to further analyze the

mechanism of wave propagation in materials with negative and zero mass densities[14].

1.3.1.2 Acoustic resonator based AMM

An acoustic resonator is usually incorporated in the design of this type of material. Fang

et al.[15] succeeded in fabricating the first AMM with negative bulk modulus using arrays

of Helmholtz resonators placed in a 1D waveguide. As shown in Figure 1.6, Helmhotz

resonators are acoustic cavities with a small neck opening. The air in the neck acts as

an oscillating mass, while the air in the cavity acts as a spring. Helmholtz resonators

are usually connected parallel to a waveguide; thus, they normally act as monopolar

resonators which affects mainly the effective bulk modulus of the material. The AMM

developed by Fang could achieve a negative bulk modulus in the ultrasonic frequency

range around 30 kHz. Different configurations and sizes with similar structures have been

later studied. Cheng et al.[16] studied the effect of the number of Helmhotz resonators

on the bandgap caused by the material. Hu et al.[17] extended the theoretical analysis

to 2D and 3D arrays of Helmhotz resonators. Lee et al.[18] suggested and experimentally

verified the first AMM to achieve negative bulk modulus in the audible frequency range

below 500 Hz. The structure of their AMM consisted of a 1D waveguide with side slits

instead of Helmholtz resonators. Zhang et al.[19] used 2D arrays of Helmholtz resonators

to construct a flat ultrasonic acoustic lens. Fey et al.[20] used an array of 1D detuned

Helmholtz resonators to achieve a series of acoustic band gaps. Lemoult et al.[21] used a

2D array of Helmhotz resonators made from soda cans to focus audible acoustic waves in

air. They showed later that such material could be organized arbitrarily to control the

propagation of sound in air, including the construction of subwavelength waveguides[22].

1.3.1.3 Membrane/Plate-type AMM

Elastic membranes and plates have been used extensively in the manufacturing reso-

nant AMM with various configurations[23]. The dipolar resonance associated with the

vibration of membranes facilitated the fabrication of AMM with negative dynamic mass
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densities below the resonance of the membranes. AMM with membranes as resonators

are characterized by their simple construction and by being compact and lightweight.

Yang et al.[24] fabricated the first membrane-type AMM from clamping a thin circular

rubber membrane with a center mass disk in a 1D duct. They showed experimentally

that their developed material broke the mass law significantly and achieved negative

mass density at the frequency region from 100-1000 Hz. Lee et al.[25] fabricated a

similar structure consisting of 1D periodic membranes, this time without the center

mass. The developed material demonstrated negative mass density at the frequency

range below the first resonance of the membrane (735 Hz). Naify et al. studied the

extraordinary transmission loss of membranes with center mass experimentally and us-

ing the finite element method (FEM) [26]. They studied the effect of adding center

mass rings on increasing the bandwidth of the TL of AMM[27]. They also evaluated

the practical limitations of manufacturing a multi-celled panel of membrane-type AMM

on the TL, taking into consideration the effect of including a rigid frame to support

the membranes[28], and stacking these frames in series[29]. A similar study was done

by Yang et al.[30] with a variation of the panel dimensions and frame material. Dec-
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Figure 1.6: Construction of the (a) unit cell and (b) structure of the first proposed
AMM to include Helmholtz resonators in its design. Taken from (Ref.[15]).

orated membranes, i.e. membranes with attached masses, were used to design nearly

perfect sound absorption at low frequencies (10-1000Hz)[31]. At certain frequencies, the

impedance of the decorated membrane is matched with that of air, allowing it to absorb

and dissipate almost all incident acoustic energy falling on it. Mei et al.[31] demon-

strated that a single asymmetric decorated membrane panel can absorb up to 86% of

the acoustic waves falling on it at 170 Hz, while two layers of the same material can

absorb up to 99% of the incident waves. Ma et al.[32, 33] improved Mei’s design by using

center decorated membrane, but this time coupled to an air sealed chamber (Figure 1.7).

A single layer of the proposed AMM succeeded in absorbing up to 99% of the acoustic
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waves falling on it at a single tunable frequency. On the opposite side, membrane-type

AMM can achieve density near zero (DNZ) conditions. DNZ is interpreted as the ability

of the material to transport acoustic waves without any phase change. This phenomenon

was first used theoretically and numerically by Fleury and Alu[34] to transmit acoustic

waves through channels much smaller than their wavelength with nearly no reflection.

It was also used by Park et al.[35] to create almost invisible walls. This was done by

transmitting acoustic waves through a very narrow hole which is much smaller than the

dimensions of the incident waves. Gu et al.[36] demonstrated that a 2D structure of the

material could achieve nearly perfect transmission through sharp corners and efficient

wave splitting.

(b)(a)
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Figure 1.7: Construction of the (a) unit cell and (b)resonant modes of the decorated
membrane AMM introduced by Ma et al. Taken from (Ref.[32]).

1.3.1.4 DNG resonant AMM

As mentioned before, dipolar resonators can be used to create resonant AMM with neg-

ative density, and monopolar ones for AMM with negative bulk modulus. Combining

the two approaches, one could manufacture a material with double negative properties

(Veselago materials). This was first suggested by Lee et al.[37], when they manufac-

tured a 1D AMM constructed by merging two of their previous AMM cell designs: a

duct with transverse elastic membranes[25] and side holes[18] (Figure 1.8). They demon-

strated that their material had double negative properties below 500 Hz by measuring a

negative speed of sound at this band. At the same time, they also demonstrated for the

first time the reverse Doppler effect long predicted by Veselago. In the region of dou-

ble negativity, a sound source approaching an observer in their material would appear

down-shifted, i.e. with a lower frequency than its actual frequency. This is the exact
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opposite of what happens in air and all traditional materials when it appears with a

higher frequency. At the same year Bongard et al.[38] manufactured a similar material

with almost the same structure but with side slits instead of side holes. The double

negativity in Bongard’s design extended between 600 and 1000 Hz. Fok and Zhang[39]

suggested a design of an AMM that could achieve double negativity. Their design, how-

ever, did not achieve DNG in their experimental verification, even though it achieved

it numerically. This was attributed to the material losses that they didn’t incorporate

in the numerical simulations. They used, for the first time, two acoustic resonators

in the design of AMM. A Helmholtz resonator for monopolar resonance and a spring

rod resonator for dipolar resonance (Figure 1.9). The first material to achieve double

negativity with membranes/Helmholtz resonator was developed by Seo et al.[40]. They

could achieve a negative refractive index between -0.06 and -3.7 in the frequency region

from 200 to 300 Hz. Yang et al.[41] suggested a design for a DNG that didn’t involve

any acoustic resonator, instead they suggested, and verified numerically, that a design

of a AMM cell with two coupled decorated membranes could achieve double negativity.

They demonstrated that their structure could achieve monopolar and dipolar resonance

at the same time. This was demonstrated for the frequency range between 820-830 Hz.

They didn’t verify their design experimentally; however, they patented it in 2014[42].

Figure 1.8: Construction of the composite structure to form first DNG AMM with
(a) negative density structure, (b)negative modulus structure, (c) composite structure.

Taken from (Ref.[37]).
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Figure 1.9: Fok and Zhang design for a DNG metamaterial showing (a) the spring
rod resonator, (b) the helmholtz resonator and (c) the construction of the unit cell.

Taken from (Ref.[39]).

1.3.2 Non-resonant AMM

1.3.2.1 Phononic crystal based AMM

Phononic crystals are constructed by the periodic placement of scatterers in a back-

ground fluid. The periodicity of the scatterers is comparable to the incident acoustic

waves; hence, acoustic band gaps due to Bragg scattering are observed. Sonic Crystals

have been the focus of a lot of research efforts in the past few decades[43–50]. Phononic

crystal based AMM, on the other hand, are constructed using sub-wavelength scatter-

ers. The anomalous effective material properties in this case rise due to the multiple

scattering effects in the material. Cervera et al. [51] studied an array of subwavelength

cylindrical scatterers in air. They used the designed material to fabricate a convex acous-

tic length and estimated the speed of sound inside the developed material to be less than

that of air. They didn’t however attempt to calculate the effective material properties of

their developed material. Torrent and Sanchez-Dehesa[52, 53] proposed and experimen-

tally verified an approach to calculate the effective parameters of cylindrical scatterers in

air based on the multiple scattering theory. Although the developed material properties

were not exceptional, they were different from the volume averaged properties of the

cylinders and the background air. Later, they analyzed[54] and realized[55] an AMM

with an effective radially anisotropic density. The suggested material consists of a cav-

ity with circular shaped grooves in one of its sides (Figure1.10). They later suggested a
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design for a phononic crystal based AMM that can achieve DNZ conditions[56]. They

demonstrated acoustic tunneling as one of the potential applications for the developed

cell.

Figure 1.10: AMM with anisotropic density suggested by Torrent and Sanchez-
Dehesa. Taken from (Ref.[54]).

1.3.2.2 Space coiling AMM

The effective material properties of AMMs are observed to depend on how much they

can delay the acoustic propagation through them. Based on this observation a relatively

new type of AMMs is constructed. Space coiling AMMs are mainly constructed from

subwavelength waveguides made from a relatively rigid material. The waveguides are

shaped in the form of a maze-like structure, so that the incident acoustic waves propagate

through the material in arbitrary paths. By mainpulating the length of these paths, the

material properties of space coiling AMMs can be tuned to extreme values. Liang and

Li[57] introduced space coiling AMMs in 2012. They showed that their introduced

material shown in Figure 1.11a was able to achieve double negativity in a very compact

structure. Using the developed material, they could achieve a negative refractive index

(n = −1) and to demonstrate DNZ effects including wave tunneling. Later they used

the same approach to numerically demonstrate an acoustic length with a large refractive

index and low losses[58]. Xie et al.[59] could experimentally verify the results obtained
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by Liang and Li by measuring the effective 1D material properties (Figure 1.11b). They

also confirmed the negative refraction obtained by the material. Frenzel et al.[60] could

fabricate 3D space coiling AMM from aluminum waveguides. They demonstrated that

the effective speed of sound in their material was much smaller than air in a broadband

extending from 1 to 4 kHz. This would allow the fabrication of broadband efficient

absorbers. Later Xie et al.[61] suggested modified designs for space coiling metamaterials

that offered better impedance matching with air than the previous designs.

2aa

a

d

d

L
w

(a) (b)

Figure 1.11: The first space coiling AMM as (a) designed by Liang and Li[57] and
(b) fabricated and tested by Xie et al.[59]

1.4 Applications of AMM

The ability to create materials with extraordinary material properties paves the way

to many interesting applications that were once thought impossible. Some of these

applications have already been implemented, others are still discussed in literature and

others are yet to come as the topic matures with time.

1.4.1 Spatial Manipulation

Coordinate transformation design is an approach to wave propagation control where we

want to design a device which causes the acoustic waves propagating through it to take

a certain trajectory. The procedure of such approach is by considering a coordinate

system that fulfills this functionality and then transforming this coordinate system and
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mapping it to the existing coordinates. This mapping step yields the necessary distri-

bution for the material properties required to construct such device. Being a purely

mathematical approach, it usually yields distributions that involves negative or even

anisotropic material properties. A requirement that is achievable using AMMs.

1.4.1.1 Acoustic Cloaking

One of the most discussed devices that can be designed using this approach are acous-

tic cloaks. Acoustic cloaks are devices that are manufactured to acoustically hide any

objects inside them. This is done by guiding the acoustic waves in a path around the

object without causing any reflection, diffraction or absorption of the incident wave

(Figure 1.12). Several approaches for the theoretical design of acoustic cloaks have been

proposed. Cummer and Schurig[62] showed that the principle of coordinate transforma-

tion could be applied to the acoustic domain. They demonstrated this by designing a

2D acoustic cloak that was capable of partially hiding a cylindrical object. Chen and

Chan[63] and later Cummer et al.[64] extended this concept to 3D object and considered

hiding a spherical object using two different approaches. Torrent and Sanchez-Dehesa[65]

suggested a structure made from two isotropic radially distributed material to implement

the approach suggested by Cummer.

Figure 1.12: The first 2D acoustic cloak suggested by Cummer and Schurig[62].

1.4.1.2 Other spatial Devices

With the aid of transformation acoustics techniques, these anomalous properties could

be spatially distributed to construct devices which were otherwise difficult to fabricate.

An example for such devices are the acoustic beam shifter suggested by Akl and Baz[66]

and the field rotator suggested by Chen and Chan[67]
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1.4.2 Subwavelength acoustic imaging

The diffraction limit states that acoustic waves cannot be focused to less than third the

wavelength of the wave. A superlens is a device that overcomes the diffraction limit and

has a lot of applications in high resolution acoustic imaging Subwavelength imagining

could be realized using DNG materials[68] by taking advantage of their negative refrac-

tive index. It could be also realized using SNG materials with negative density[69–71]

using surface waves at an interface with a limited thickness of the material.

1.4.3 Perfect Absorption

AMM can achieve impedance matching as well as slow sound propagation. These two

phenomena allow for the design of extraordinary sound absorbing devices. Examples of

such devices include the already discussed nearly perfect absorbers developed by Ma et

al.[32, 33] and the use of slow sound in resonator based AMMs as proposed by Groby et

al.[72].

1.4.4 Extraordinary Transmission

DNZ materials can transform acoustic waves with almost zero phase change, this enables

the manufacturing of acoustic devices capable of transmitting sound through very narrow

channels and steep bends with virtually no losses[34, 35, 73, 74].

1.5 Active AMM

The dispersive nature of passive AMM restricts their anomalous characteristics to limited

frequency bands. Once the material is fabricated, its properties cannot be tuned or

adjusted. This poses many restrictions on the manufacturing process of AMM and

requires that they are fabricated by special processes to ensure that they achieve their

design targets; moreover, for resonant AMM, since they depend mainly on the local

resonance within their structure, they are very sensitive to geometrical defects and their

boundary conditions. To overcome these limitations, as well as provide a mean to control

the effective properties of the material, active elements have recently been used in AMM
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to construct active AMMs. These elements are used to control the material properties

of AMMs, and to enhance the frequency range of the desired material properties.

The first active AMM was first suggested by Baz[75, 76] when he suggested a structure

based for active acoustic metamaterials consisting of acoustic cavities with walls made

of piezoelectric diaphragms connected to a passive electrical circuit (Figure 1.13a). He

demonstrated analytically that the newly suggested material could achieve a tunable

effective density. Akl and Baz[77] later applied the same approach to design and analyze

an active AMM with tunable bulk modulus. The suggested structure consisted of an

array of Helmholtz resonators with one of the walls of the resonator replaced by a

piezoelectric diaphragm (Figure 1.13b). They were later able to experimentally verify

their predicted results[78, 79], when they manufactured an AMM cell consisting of two

piezoelectric diaphragms with water as the background fluid. One of the diaphragms

was used as a sensor for the incident acoustic excitations and the other was used as

an actuator, so that a closed loop is constructed between the diaphragms (Figure 1.14).

Through positive and negative feedback, they could shift the resonance of the diaphragm

and hence control the effective density of the cell.

Chen et al. [80] suggested the use of gradient magnetic fields to actively tune the

Piezo-diaphragm

Helmholtz

resonator

Flow rate (Q)

Length (2×L), Area (A), Density = r f

l

Area=a

Volume

(AH×lH)

(a) (b)

Figure 1.13: The first proposed active metamaterial with (a) controllable density and
(b) and controllable bulk modulus. Taken from (Ref.[75] and Ref.[77])

material properties of membrane-type AMM. They suggested an active AMM cell made

of an aluminum circular ring with a magnetorheological elastomer at the center. They

used a magnetic field to control the stiffness of the elastomer and hence the effective

density. Their approach however was limited to tuning the effective properties of the cell

near the first mode of the membrane. Xiao et al. [81] suggested the use of an electric

field formed between a fishnet electrode and a metal coated central platelet attached to

a circular rubber membrane. Their design required the application of voltages exceeding

300 V to control the effective density within a limited frequency range. In the domain

of phononic crystal based AMMs, several designs were suggested for a tunable AMM
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Figure 1.14: (a) Construction and (b) feedback circuit of the first realized active
AMM. Taken from ( Ref.[78])

by introducing a 1D layered structures that included piezoelectric material layers. By

changing the boundary conditions of the layers, the effective material properties could

be tuned[82–84].

Chen et al.[85] experimentally demonstrated a DNG material whose effective density can

be controlled using elastic membranes tensioned by direct current electromagnets. The

material had a similar construction to the passive material suggested by Lee et al.[37]

(Figure 1.8).

The introduction of active AMM has paved the way to a set of additional applications for

AMMs. This was demonstrated by the construction of interesting acoustic reconfigurable

and programmable devices. Casadei et al.[86] used a 2D array of piezoelectric patches

shunted on a plate structure to construct a reconfigurable elastic waveguide. Popa and

Cummer[87] suggested and experimentally evaluated an active AMM cell that transmits

the incident waves in one direction while blocks them in the other direction. Their

cell consisted of a piezoelectric diaphragm inserted between two Helmholtz resonators

(Figure 1.15). Later Popa et al.[88] suggested a similar design for active AMM that

could be reconfigured in real-time. They demonstrated their design by constructing a

reconfigurable acoustic lens and beam shifter from the developed material. Most of the

mentioned approaches however are limited to tuning the original properties of the AMM

by shifting the dispersion plots; moreover, they are of open loop nature in the sense that

their effective properties can be changed, but they cannot be guaranteed in a closed loop

sense. Any change in the operating conditions of the material would require that they

are readjusted.
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Figure 1.15: (a) Construction and (b) feedback circuit of the AMM cell capable of
non-reciprocal transmission as designed by Popa and Cumer. Taken from ( Ref.[87])

1.6 Problem Statement

To completely manipulate the propagation of acoustic waves in a medium, it must be

constructed from a material with acoustic properties (ρ,B) not readily available in na-

ture (acoustic metamaterials).

The propagation of the wave inside acoustic metamaterials can be controlled by embed-

ding active elements in the structure of the material. The accurate adjustment of the

material properties of the metamaterial cell requires the incorporation of a closed loop

feedback control system in the design of the material. An approach which has not yet

been investigated.

1.7 Work Objective

The main objective of the current study is to design, model, simulate and experimentally

test a new class of an active acoustic metamaterial with controllable material properties

(mass density). The properties of the material should be configurable in real time

through the implementation of a closed loop feedback control system. This control

system ensures that the achieved material properties are identical to the desired set

values.

1.8 Scope of Work

1. Review the existing literature covering:
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(a) Passive and active acoustic metamaterials covering the basic concepts that

govern their operation in addition to their applications in the control of acous-

tic wave propagation.

(b) Homogenization techniques for the estimation of the effective density and

effective bulk modulus of passive AMMs.

2. Review the existing theory covering:

(a) Piezoelectric materials and how to model them analytically.

(b) Feedback control systems and their applications regarding to acoustic wave

propagation control.

3. Develop a homogenization technique for active acoustic metamaterials.

4. Develop a 1D active acoustic metamaterial cell with tunable material properties

in the low frequency range up to 2 kHz.

5. Construct a theoretical model to predict the effective properties of the developed

cell.

6. Create a finite element model “FEA” of the cell to simulate its behavior and verify

the theoretical model.

7. Extend the analysis of the 1D AMM cell to 2D and investigate the limitations and

potential applications of such system.

8. Adjust the design of the suggested cell to be able to work in a closed loop manner.

9. Design a control system for the effective material properties of the active acoustic

metamaterial.

10. Design and conduct the necessary experiments to validate the theoretical and

numerical results.

11. Implement and test the control system to estimate its performance.
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1.9 Thesis Summary

In this chapter, we introduce the origins of active and passive AMM, discussing the

mechanisms behind the extraordinary characteristics of such materials. The main ap-

proaches for the design of passive and active AMMs are discussed and the suggested

designs present in literature are reviewed. The achieved and potential applications for

AMMs are also discussed. In Chapter 2, the theory necessary to model active AMM

is reviewed and summarized. This includes the acoustic two-port theory and the ho-

mogenization techniques for AMMs. For the active part of the material, the theory of

piezoelectricity is reviewed.

In Chapter 3, a design for a 1D plate-type active AMM is introduced and analyzed

analytically. A numerical model is also developed to predict the behavior of the material

and verify the analytic calculations. The performance of the developed cell is evaluated

and the analytic and numerical results are discussed.

In Chapter 4, the previous design is extended to 2D AMM and the analytic and numerical

models are further developed to account for the complications of studying the material

in two dimensions. The numerical and analytic predictions of the cell are analyzed

and compared. An efficient controllable waveguide is constructed and analyzed both

numerically and analytically to demonstrate one of the potential applications of the 2D

active AMM.

In Chapter 5, a new design for 1D plate-type active AMM is introduced. The new design

incorporates a closed loop feedback system for an enhanced control over the material

properties of the AMM. An analytic model for the closed loop system is developed and

used for the evaluation of the performance of potential controllers. The stability of the

material is also discussed. An experimental setup is developed to verify the predicted

analytic results and implement the necessary control algorithms. An adaptive control

system is designed to manipulate the effective density of the cell in a closed loop manner

by adjusting the controller transfer function of developed cell.

In Chapter 6, the main findings of the current work are summarized and discussed. Also,

several paths for extending the current work are proposed and discussed.



Chapter 2

Theoretical Background

The construction of an active plate-type AMM requires a theoretical background that

covers several disciplines, this includes but is not limited to physical acoustics, engineer-

ing acoustics, smart materials, mechanics of materials, control engineering, electronics,

signal processing and software engineering. This chapter is concerned with the review of

the basic theory required to model and analyze passive AMM, as well as, the basic the-

ory behind piezoelectric materials that will be used to construct the active AMM. The

necessary theory for the other disciplines will be briefly introduced when encountered in

the following chapters.

2.1 Analytic modelling of AMM

The analytic approach used to model the acoustic wave propagation depends on the

frequency of the waves and the relation between their wavelength and the feature size

of the geometry of the medium in which they are propagating. Figure 2.1 shows the

possible relations between the wavelength and the feature size of the medium. When the

wavelength is much smaller than the dimensions of the medium, it is usually treated as

a ray and ray acoustics is used in the analysis of the propagation of the wave. When the

wavelength is comparable to the object dimension, especially in the presence of period-

icity, Bragg scattering occurs and Bloch’s theorem is used to analyze the propagation of

the medium. When the dimensions of the object are much smaller than the wavelength,

as in the case of metamaterials, homogenization approaches are usually incorporated.

23
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The frequency of the traveling waves below which the medium can be homogenized is

often called the low frequency limit or the long wavelength limit. Structures whose

dimensions are much less than the wavelength are normally called subwavelength struc-

tures. Homogenization is the process in which a composite medium, consisting of two

λ a

λ >> a

λ a

λ ~ a

λ

λ << a

(a) (b) (c)

Figure 2.1: Different relations between the wavelength and the feature size of the
medium it is propagating in.

or more materials organized in a subwavelength structure, is converted to a homoge-

neous medium with a single effective value for ρ and B (Figure 2.2). Several methods

Homogenization

Metamaterial cell

eff, Beff

1, B1
2, B2

Figure 2.2: Homogenization of AMM.

for the homogenization of materials have been proposed in literature[53, 89, 90]. The

applicability of a homogenization method depends mainly on the shape and nature of

the material structure. In the following sections, some of the most common approaches

for the homogenization of metamaterials are introduced and criticized.

2.1.1 Volume Averaging

Perhaps the most basic and straight forward method for the calculation of the effective

parameters of a composite medium is to consider the volume average of the constitutive

components forming the materials. For example, the effective density of a composite

material consisting of n different materials can be given by:

ρeff =

∑n
1 ρiVi∑n
1 Vi

(2.1)
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where Vi is the volume occupied by each component i of the medium.

While this approach might be suitable for the evaluation of the static material prop-

erties of the composite material, it doesn’t take into consideration the nature of the

propagation of the waves inside the medium. It also doesn’t take into consideration the

geometry of the structure and the geometrical relations between the different compo-

nents of the medium. Given the previous limitations, volume averaging cannot be used

to homogenize AMM.

2.1.2 The multiple scattering theory

The multiple scattering theory describes the propagation of a wave in a medium consist-

ing of a background homogeneous fluid with embedded scatterers made from a different

material and placed in arbitrary positions. Considering an acoustic wave incident on the

studied medium, the acoustic pressure at any given location in the material is the sum of

the incident acoustic excitation in addition to the scattered waves from all scatterers[91]:

P (r, θ) = P ext(r, θ) +

N∑

α=1

P scat
α (r, θ) (2.2)

where r, θ are the polar coordinates, P (r, θ) is the total pressure field, P ext(r, θ) is the

external incident pressure field, P scat
α (r, θ) is the scattered pressure field from scatterer

α and N is the total number of scatterers in the material. Considering only cylindrical

scatterers, the scattered waves from each cylinder can be described as the sum of Hankel

functions of the first kind[91]:

P scat
α (r, θ) =

∞∑

q=−∞

(Aα)qHq(krα)e
−jqθα (2.3)

where j is engineering complex number, (Aα)q are coefficients to be determined, Hq is

the qth order Hankel function and (rα, θα) are the polar coordinates with the origin

located at the center of cylinder. The determination of the coefficients (Aα)q allows for

the estimation of the pressure field inside the material. Torrent and Sanchez-Dehesa[53]

suggested a procedure based on the multiple scattering theory to homogenize a material

consisting of clusters of rigid cylinder in air. The main drawback of their approach is

that it is practically applicable to only cylindrical or spherical scatterers in air. While

this might be suitable for homogenizing a limited set of phononic crystal based AMM,
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it is not applicable to resonant AMM or any other AMM whose structure is not in the

form of a cylinder or sphere.

2.1.3 Acoustic two-port theory

The acoustic two-port theory, also known as ‘Acoustic transmission line theory’, is com-

monly used in acoustics to analyze acoustic duct networks at low frequencies[92]. Since

one of the basic assumptions of AMM is the operation in the long wavelength limit, i.e.

at low frequencies; the acoustic two-port theory has recently been used to characterize

AMM for different configurations[38, 93, 94]. One of the main elements of the acoustic

two port theory is the transfer matrix (T )which relates the acoustic pressure (p) and

velocity (v) at point a to the pressure and velocity at point b (Figure 2.3a) through the

relation: 
pa
va


 = T


pb
vb


 , T =


T11 T12

T21 T22


 (2.4)

Equation (2.4) is useful when connecting two networks in series as the case in layered

Pa

va

Pb

vb

Two-Port 

Network Pb-

Pb+Pa+

Pa-

Two-Port 

Network

(a) (b)

Figure 2.3: Representation of two port networks using (a) the transfer matrix and
(b) the scattering matrix.

AMM (Figure 2.4). Given a 1D metamaterial cell consisting of n cascaded layers with

different material properties, the transfer matrix of the whole cell can be written as:

Tcell = T1 T2 ... Tn (2.5)

where T1,T2, ...,Tn are the transfer matrices of each layer. For an acoustic layer with

acoustic impedance Zn and thickness tn, the transfer matrix can be calculated from the

relation [92]:

Tn =




cos (kntn) jZn sin (kntn)

j sin (kntn)/Zn cos (kntn)


 (2.6)
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where kn = ω/cn is the wave number of the acoustic wave in layer n, ω is the angular

frequency of the incident acoustic wave, cn is the speed of sound in the layer and j =
√
−1

is the engineering complex number. Another important element of the acoustic two

Layer 

1

Layer 

2

Layer 

3

Layer 

n

t1 t2 t3 tn

Metamaterial Cell

Figure 2.4: Schematic of a layered AMM structure.

port theory is the scattering matrix (S) which relates the incident and scattered wave

pressures on an acoustic sample (Figure 2.3b). The scattering matrix formulation is

given by: 
p

−
a

p+b


 = S


p

+
a

p−b


 , S =


S11 S12

S21 S22


 (2.7)

where p±a , p
±

b are the complex pressures traveling in the positive and negative directions

at points a and b respectively. The scattering matrix can be calculated from the elements

of the transfer matrix from[95]:

S =


 1 −T11 − T12

Zb

− 1
Za

−T21 − T22

Zb



−1 

 −1 T11 − T12

Zb

− 1
Za

T21 − T22

Zb


 (2.8)

where Za and Zb are the acoustic impedance at points a and b. The elements of the scat-

tering matrix represent the complex pressure reflection and transmission coefficients (R,

T ) for incident upstream and downstream acoustic waves. For geometrically symmetric

AMM cells the scattering matrix can be written as:

S =


R T

T R


 (2.9)
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2.1.4 Retrieval of the effective material properties

The effective material properties of AMM can be estimated by computing the elements

of the transfer matrix or the scattering matrix of the material either analytically from

the constitutive layers of the cell, experimentally or numerically. These elements are

then compared to those of a homogeneous acoustic layer and the material properties

are evaluated. Given that the elements of the transfer matrix for an AMM sample

are determined, the effective material properties can be estimated using equation (2.6).

For example, assuming that the effective parameters are Zeff , neff , teff , they can be

determined using:

neff =
±cos−1(T11) + 2πm

koteff
, Zeff =

−jT12

sin(neffkoteff )
(2.10)

where neff = co
ceff

=
keff
ko

is the effective refractive index of the material, co, ceff are the

speed of sound in air and the effective speed of sound in the material respectively, ko is

the acoustic wave number of the incident wave in air, m = 0, 1, 2, ... .

An equivalent approach employs the use of the Scattering matrix elements (S-parameters).

This approach was first introduced in the electromagnetic domain [96–98] and later

adapted to the acoustic domain [89]. It was used to calculate the effective constitu-

tive material properties of an AMM from measuring the S-parameters from a sample

consisting of a few number of cells down to a sample consisting of a single symmetric

metamaterial cell [93, 99–101].

Using the S-parameters (R,T ) instead of the transfer matrix elements, the effective pa-

rameters Zeff , neff can be calculated by [89]:

neff =
−j ln(φ) + 2πm

kod
, Zeff =

ρocoq

1− 2R+R2 − T 2
(2.11)

where

q = ±
√
(R2 − T 2 − 1)2 − 4T 2, φ =

1−R2 + T 2 + q

2T
(2.12)

Zeff , neff are related to the effective density and the effective bulk modulus of the AMM

(ρeff , Beff ) by:

Zeff = ρeffceff , n2
eff =

ρeffc
2
o

Beff

(2.13)
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Reordering the equations, the effective properties can thus be calculated from

ρeff =
neffZeff

co
, Beff =

Zeffco
neff

(2.14)

Two issues must be addressed before equations (2.10) to (2.14) can be used to uniquely

determine the effective material properties of the AMM. The First is the estimation of

the sign of neff . For passive AMM this issue is addressed by imposing the real part

of the acoustic impedance to be positive Real(Z) ≥ 0, or the imaginary component of

the refractive index to be negative Imag(neff ) ≤ 0. These constraints are generally

not applicable to active AMM; nevertheless, assuming that the input energy to the

cell is very small compared to the incident acoustic energy, these conditions should

still be applicable. The second issue is the branching problem, which concerns the

correct estimation of the branch number m. Fokin et al. [89] suggested determining the

effective parameters of a minimum thickness AMM cell, for which m is zero, and using

this solution to estimate higher frequencies. Zhu et al. [93] suggested using an iterative

approach to ensure the continuity of the parameters. On the other hand, Szabo et al. [98]

suggested a more rigorous approach to estimate the branch number. They suggested

an algorithm based on Kramers-Kronig relationship between the imaginary and real

components of n which uniquely determines the value of m. While their algorithm

was only developed for electromagnetic metamaterials, it was extended to be applied

in acoustics[102]. And since it depends on fundamental physical relations based on the

principle of causality [103], it can be used directly for the acoustic domain.

2.2 Piezoelectricity

Piezoelectricity is the phenomenon in which a material generates electric charges when

a mechanical stress is applied to it. Materials that exhibit this phenomenon are called

piezoelectric materials. Piezoelectric materials usually exhibit the reverse-piezoelectric

effect as well, i.e. the material is strained when an electric voltage is applied to them.

This direct two-way coupling between the electric and mechanical domains allows their

use in many forms of transducers and electric actuators. Piezoelectricity is caused by the

crystal structure of the material and its orientation. The atoms of piezoelectric material

are arranged in a polarized crystal form, i.e. the crystal has negative and positive
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polarities. The crystals are normally arranged randomly inside the material and thus

the net charge produced by the material is zero. When the grains of the material are

oriented in a single direction, the piezoelectric effect is observed. This can happen due

to natural causes as in quartz. It also could be artificially synthesized by applying a

temporary large electric field to the heated material. This process is called poling the

material (Figure 2.5). In practice, poling usually involves subsequent heating above the

Curie point, application of the electric field, cooling below the Curie point, and finally

removal of the electric field. The electric field orients all the crystals of the material

to a single direction called the poling direction. The IEEE 179-1987[104] standard on

piezoelectricity denotes to the poling direction by the subscript (1) and the two normal

directions are given by the subscripts (2) and (3). Piezoelectric materials can be classified

(a) (b)

Figure 2.5: The crystal structure of a piezoelectric material (a) before the poling
process and (b) after the poling process

due to their nature into ceramic and polymer types. Piezoelectric polymers are usually

manufactured in the form of ductile films. This makes them more suitable to be used

as sensors. Piezoelectric ceramics on the other hand are stiff and brittle, they are more

commonly used in composite structures with other materials to enhance their ductility.

The most common types of piezoelectric ceramics are Lead Zirconate Titanates (PZT),

they are manufactured in different forms including disks, plates, bars and cylinders. The

strain caused in ceramic piezoelectric materials due to the applied voltages is usually

small compared to their dimensions. When operating as actuators, they are commonly

used with other metallic materials in unimorph and bimorph composite configurations.

These configurations convert the lateral strain introduced in the material to a bending

action in the composite material amplifying the transverse deflections (Figure 2.6).
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V

Piezoelectric maerial

Substrate

Figure 2.6: Piezolectric bimorph for the amplification of the displacement of piezo-
electric material.

The linear theory of piezoelectricity defines the constitutive equations of piezoelectricity

in the stress-charge vector form to be given by:

σp = CE
pqSq − ekpEk

Di = eiqSq + ǫSikEk (2.15)

where σp are the stress components, Sq are the strain components, Di are the electric

displacement components, Ek are the electric field components, Cpq are the stiffness

components, ekq is the piezoelectric coefficient components and ǫSik is the permittivity

components. The superscript E and S indicates that the coefficient is evaluated at

constant electric field and strain respectively. Equations(2.15) can be written in compact

matrix form: 
σ

D


 =


C

E −eσ

e ǫs




S
E


 (2.16)

where CE is the elasticity matrix, ǫ is the permittivity matrix, e is the piezoelectric

stress/electric field matrix and σ,S,E,D are vectors given by:

σ =




σ1

σ2

σ3

σ4

σ5

σ6




, S =




S1

S2

S3

S4

S5

S6




, E =




E1

E2

E3


 , D =




D1

D2

D3


 (2.17)
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When the material is transversely isotropic, i.e. the material properties in the directions

(2,3) normal to the polling direction is isotropic, the elasticity matrix is given by:

C =




C11 C12 C13

C11 C13 0

C33

C55

Sym C55

C66




(2.18)

The permittivity matrix is given by:

ǫ = ǫo




ǫ11 0 0

0 ǫ11 0

0 0 ǫ33


 (2.19)

where ǫo is the permittivity of free space. The piezoelectric matrix is given by:

e =




0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0


 (2.20)

The material properties of piezoelectric material may also be given in the strain charge

form:

Sq = sEqpσp + dTkqEk

Di = dipσp + ǫσikEk (2.21)


S

D


 =


s

E dT

d ǫσ




σ
E


 (2.22)

where d is the piezoelectric strain/electric field matrix, which is related to the matrix e

by:

e = dC (2.23)

and s = C−1 is the elastic compliance matrix.
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Open loop 1D active AMM

Membrane/Plate type Acoustic Metamaterials (MAMs) have a relatively simple cell

structure which facilitates their characterization and implementation; nevertheless, they

operate in a limited frequency range, moreover because of their resonant nature, they

are very sensitive to geometrical variations in the membrane structure and boundary

conditions. To overcome these limitations as well as provide a mean to control the

effective properties of the material, active elements were recently used in MAMs in

order to construct active MAMs. The active elements within the material are used to

control its material properties, as well as, to enhance the frequency range of the desired

material properties.

In this chapter, we propose a novel design for active MAMs consisting of an active

piezoelectric PZT plate with air as a background fluid. The stiffness of the plate is

controlled by the application of an electric potential difference across its two surfaces;

this enables us to control the effective (homogenized) density of the AMM. This kind

of control would open the door for the realization of various devices whose operation

depends on the spatial distribution of density between positive and negative values as

well as density near zero (DNZ) applications.

This chapter is divided into four sections. In Section 3.1, the construction of the sug-

gested metamaterial cell is introduced, and an analytic model for the deflection of the

plate inside the material is discussed. In Section 3.2, a numerical model is constructed

using the FEM to verify the analytic model. In Section 3.3, the results obtained from

33



Chapter 3. Open loop one dimensional metamaterial cell 34

both models are compared and the overall performance of the new design is evaluated

and analyzed. Finally, a summary of the main findings is presented.

3.1 Theoretical formulation

A suggested design for a 1D active MAM cell, shown in Figure 3.1, consists of clamped

thin circular elastic piezoelectric plates suspended in air. The unit cell is repeated in the

wave propagation direction to form the material (Figure 3.2) and its largest feature size

is assumed to be much smaller than the wave length of the incident acoustic wave, thus

homogenized effective material properties could be used to describe the wave propagation

in the material. The material properties of the cell are controlled by applying a static

electric voltage across the thickness of the piezoelectric plate. This voltage changes the

stiffness of the plate and thus its acoustic impedance and hence the effective material

properties of the cell.

Air

 o,  Bo, co

PZT disk 

p, Ep
tp

ta ta

a

Air 

o,  Bo, co

Figure 3.1: Construction of the suggested active open loop AMM cell.

Wave Propagation

 direction

Circular 

piezoelectric disks

Background  

fluid (Air)

Unit Cell
Hard wall

a

Figure 3.2: Material model of the suggested 1D active plate-type AMM.



Chapter 3. Open loop one dimensional metamaterial cell 35

3.1.1 Characterizing the open loop AMM cell

To estimate the effective material properties of a layered AMM cell analytically using

Two-port formulation: first, the local transfer matrix of every layer is calculated depend-

ing on the nature of the layer. The transfer matrix of the whole metamaterial cell is then

estimated using Equation (2.5) and converted to the scattering matrix form. Finally,

the complex pressure and reflection coefficients are estimated using (2.9) and inserted

into Equations (2.11) to (2.14) in order to estimate the effective material properties.

The suggested cell, shown in Figure 3.1, consists of three layers, two of them are just

straight acoustic layers and thus their transfer matrices can be easily determined from

Equation (2.6). In order to determine the transfer matrix of the third layer which is the

elastic plate, the thickness of the plate (tp) is assumed to be small enough compared

to the width of the cell (a) and the incident wavelength; Thus, it could be assumed as

a lumped element with lumped impedance (Zp). For a lumped element, the transfer

matrix is given by ([92]):

T =


1 Z

0 1


 (3.1)

where the acoustic impedance of a lumped element (Z) can be calculated from:

Z =
p

v
(3.2)

Since the traverse velocity of the elastic plate is not uniform across its cross-section,

the averaged velocity over the area of the plate (ṽ) is used to estimate the acoustic

impedance of the plate.

The acoustic impedance of passive clamped elastic plates is a classical problem in acous-

tics ([105]), however we shall consider the active case where the plate is subjected to

in-plane stresses caused by the piezoelectric effect.

Considering a circular piezoelectric plate with very thin metallic electrodes plated to its

upper and lower surfaces. The plate is subjected to a static voltage V applied between

the two metallic electrodes. The dynamics of the plate will be approached as an elastic

plate with constant uniform in-plane stresses caused by the piezoelectric effect due to
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the applied static voltage. For a transversely isotropic thin plate, Equation (2.16) can

be reduced to ([106]): 
σ11
D3


 =


Q̄11 −ē31

ē31 ǭ33




s11
E3


 (3.3)

where σ11 is the longitudinal stress, E3, D3 is the components of the electric field and

the electric displacement in the thickness direction, and

Q̄11 = C11 −
(C13)

2

C33
, ē31 = e31 −

C13e33
C33

ǭ33 = ǫ33 +
e233
C33

The stress σ in the plate due to the applied electric field in the thickness direction can

then be given by:

σ = −ē31E3 (3.4)

Hence, the in-plane stress due to an applied static voltage V across the electrode can be

given by:

σ =
−ē31V

tp
(3.5)

For a Kirchhoff plate subject to a uniform in-plane stress, the equation of motion for

the free traverse vibration of the plate could be written as ([107]):

ρptp
d2w(r, θ, t)

dt2
+Da∇4w(r, θ, t)− T∇2w(r, θ, t)

= P (r, θ, t)

(3.6)

where ρp is the mass density of the plate material, tp is the thickness of the plate,

w(r, θ, t) is the transverse deflection of the plate, T is the in-plane force per unit tangent

length which is given by:

T = σtp

= −ē31V
(3.7)

Da is the anisotropic flexural rigidity of the plate and for a transversely isotropic plate

it is given by:

Da =
Q̄11t

3
p

12
(3.8)
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For a plate under forced harmonic excitation, Equation (3.6) can be modified to:

ρptp
d2w(r, θ, t)

dt2
+Da∇4w(r, θ, t))− T∇2w(r, θ, t)

= P (r, θ, t)

(3.9)

where P (r, θ, t) is the pressure difference across the plate due to incident acoustic waves.

If viscous damping is to be considered, Equation (3.9) can be written as:

ρptp
d2w(r, θ, t)

dt2
+ 2β

dw(r, θ, t)

dt
+Da∇4w(r, θ, t))

−T∇2w(r, θ, t) = p(r, θ, t)

(3.10)

where β is the viscous damping coefficient. For harmonic excitation, the incident acoustic

pressure and the deflection of the plate could be written as:

p(r, θ, t) = P (r, θ)ejωt, (3.11)

w(r, θ, t) = W (r, θ)ejωt (3.12)

Substituting in Equation (3.10) and canceling the exponential:

−ρptpω
2W (r, θ) + 2jβωW (r, θ) +Da∇4W (r, θ)

−T∇2w(r, θ, t) = P (r, θ)
(3.13)

Reordering:

(∇4 − T

Da
∇2 − g4)W (r, θ) =

P (r, θ)

Da
(3.14)

where g is the complex wave number of the flexural waves traveling through the plate:

g4 =
ρptpω

2 − 2jβω

Da
(3.15)

The solution of Equation (3.13) can be written as the sum of the solution of the homoge-

neous equation and the solution of the particular equation. The homogeneous equation

is written as:

(∇4 − T

Da
∇2 − g4)W (r, θ) = 0 (3.16)

Since ∇ is a linear operator Equation (3.16) can be written in the form:

(∇2 − g21)(∇2 + g22)W (r, θ) = 0 (3.17)
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where:

g21 =
T +

√
4D2

ag
4 + T

2Da
(3.18)

g22 =
−T +

√
4D2

ag
4 + T

2Da
(3.19)

For a polar coordinate system whose origin is at the center of the circular plate the

solution of Equation (3.16) is given by:

W (r, θ) = Wn(r) cos (nθ) (3.20)

Wn(r) = AnJn(g1r) +BnIn(g2r) (3.21)

where Jn(), In() are the Bessel function and the modified Bessel function of the first kind.

Considering acoustic waves incident normal to the plate can only excite axi-symmetric

modes ([108]), Equation (3.21) can be further reduced to:

W (r) = AJ0(g1r) +BI0(g2r) (3.22)

Adding the particular solution to the homogeneous solution. The solution of Equa-

tion (3.13) is then:

W (r) = AJ0(g1r) +BI0(g2r)−
P

Dag4
(3.23)

The values of A and B can be determined from the boundary conditions of the plate.

For a clamped boundary:

W (b) = 0,
dW

dr

∣∣∣∣
r=b

= 0 (3.24)

where b is the radius of the plate. Substituting in Equation (3.23) with the boundary

conditions then we get:

0 = AJ0(g1b) +BI0(g2b)−
P

Dag4
(3.25)

0 = −Ag1J1(g1b) +Bg2I1(g2b) (3.26)



Chapter 3. Open loop one dimensional metamaterial cell 39

Then

A =
Pg2I1(g2b)

Dag4(g2J0(g1b)I1(g2b) + g1J1(g1b)I0(g2b))

B =
Pg1J1(g1b)

Dag4(g2J0(g1b)I1(g2b) + g1J1(g1b)I0(g2b))

For convenience let A = MP , B = NP then:

M =
g2I1(g2b)

Dag4(g2J0(g1b)I1(g2b) + g1J1(g1b)I0(g2b))

N =
g1J1(g1b)

Dag4(g2J0(g1b)I1(g2b) + g1J1(g1b)I0(g2b))

The solution of the equation of motion of the clamped plate is then:

W (r) = P

(
MJ0(g1r) +NI0(g2r)−

1

Dag4

)
(3.27)

To calculate the acoustic impedance of the plate, it is required to calculate its area

averaged displacement W̃ which is given by:

W̃ =
1

Area

∫ b

0
W (r)dA

=
P

πb2

∫ b

0
P (MJ0(g1r) +NI0(g2r)−

1

Dag4
).2πrdr

W̃ = P (
2MJ1(g1b)

g1b
+

2NI1(g2b)

g2b
− 1

Dag4
) (3.28)

The averaged velocity of the membrane ṽ is then given by:

ṽ = jωW̃ = jωP (
2MJ1(g1b)

g1b
+

2NI1(g2b)

g2b
− 1

Dag4
) (3.29)

The acoustic impedance of the plate is thus given by:

Zp =
P

ṽ
=

1

jω
(
2MJ1(g1b)

g1b
+ 2NI1(g2b)

g2b
− 1

Dag4

) (3.30)

3.2 The finite element model

To validate the analytic approach, a 3D piezo-acoustic finite element model is con-

structed using ANSYS➤ commercial software. The model is constructed to mimic the
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4-Microphone experimental procedure for the evaluation of the normal incidence sound

transmission ([109, 110]). The model consists of one or more structural circular plates

placed in a circular impedance tube of the same radius (Figure 3.4). Since the whole

model has quarter symmetry only a quarter sector of the tube and the plate is modeled

and symmetry boundary conditions are applied to the structural and acoustic domains.

The impedance tube is modeled as two acoustic domains (Upstream and Downstream),

each domain is discretized using 20-node brick acoustic elements (FLUID220), and the

length of each domain is taken to be 500mm long. The piezoelectric plates are discretized

using 20-node brick coupled-field structural elements (SOLID226). The element size in

the acoustic domain is chosen to follow the rule that there should be at least six elements

per wave length at the maximum frequency. The maximum frequency allowed in the

analysis is limited by two factors:

1. To maintain plane wave propagation in the impedance tube the upper frequency

limit should be defined as follows ([110]):

fu <
0.586co

d
(3.31)

where co is the speed of sound in the tube and d is the diameter of the tube.

2. The homogenization limit of the AMM cell which is chosen so that the wavelength

of the incident wave is at least an order of magnitude larger than the largest

dimension of the cell in the propagation direction i.e.:

f <
co
10a

(3.32)

where a is the width of the AMM cell.

The element size of the piezoelectric domain is chosen so that the error between the

estimated first three modes of the circular plate using the analytic approach and that

evaluated using modal analysis is less than 1%. An infinite surface boundary condition is

applied at the ends of the impedance tube to model the anechoic terminations suggested

by the ASTM-E2611 procedure while hard wall boundary conditions are applied to its

external surface to account for the symmetry of the model. The structural displacements

along the circumference of the plate are set to zero to ensure the clamped boundary
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Figure 3.3: Four microphone setup for estimating the reflection and transmission
coefficients of an acoustic sample.

Mic 1
Mic 2

Mic 3
Mic 4

Background Air

Air inside the cell

Piezoelectric disk

Figure 3.4: Finite element mesh including the impedance tube and the open loop
AMM cell. The positions of the virtual microphones are indicated and the open loop

AMM cell is highlighted.

conditions. Also, for each surface of the plate, the voltage degree of freedom is coupled to

simulate the effect of the presence of thin metallic electrodes. The solution is done in two

steps; The stresses on the piezoelectric plate due to the applied voltage are determined

using a static structural solution, then the voltage is removed and the stresses calculated

in the first step are applied as pre-stresses in a linear perturbation harmonic analysis

with incident acoustic pressure waves ([111]). The harmonic analysis is carried out at

frequencies ranging between 250 Hz and 2000 Hz with a frequency step of 5 Hz. The

AMM sample is excited twice using a surface acoustic velocity source located once at

the upstream end of the tube and the other at the downstream end. Its response is then

captured by four virtual microphones located at the positions shown in Figure 3.3 and

3.4, the distances s, d are chosen as per the guidelines of the ASTM-E2611[110].

The readings of the four microphones are recorded and converted to the S-matrix using

the procedure found in [109].
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Figure 3.5: Amplitude and phase of the complex pressure reflection coefficient with
no voltage applied to the piezoelectric disk (Black lines with circular markers) and
subjected to a static voltage of 75V (Red lines with triangular markers) and 150V

(Blue lines with diamond markers).
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Figure 3.6: Amplitude and phase of the complex pressure transmission coefficient
with different voltages applied to the piezoelectric disk V = 0, 75, 100V .

3.3 Results and discussion

3.3.1 Characterization of a single cell

A single AMM cell with the construction shown in Figure 3.1 is used as a test case

to compare the analytic results obtained from the two port approach and the results

are compared to that obtained from the FEM. The dimensions of the cell used in the

comparison are a = 5mm, tp = 125µm and radius r = 17mm. The piezoelectric disk is

made of PZT-5A with the material properties given in Table 3.1.



Chapter 3. Open loop one dimensional metamaterial cell 43

Table 3.1: Properties of PZT-5A.

Property Unit Value

ρ kg/m3 7500
C11 GPa 132
C12, C23 GPa 73
C33 GPa 115
e31 C/m2 -4.1
e33 C/m2 14.3
e15 C/m2 10.5
ǫ11 804.6
ǫ33 659.7
Qm = η−1 50

A comparison between the amplitude and phase of the complex reflection coefficient

obtained by the use of acoustic 2-Port model and that obtained using the FEM, for

three different values of applied voltages, is shown in Figure 3.5. Excellent agreement

is observed between the two methods for the range of applied voltages. The same com-

parison is shown in Figure 3.6 but for the complex transmission coefficient. Figure 3.7

shows the TL of one cell under three different applied voltages. The TL is defined as:

TL = 20log10(
1

S21
) (3.33)

It should be noted that the trend of the transmission loss in Figure 3.7 agrees with

the general trend reported for the measured TL of circular elastic plates clamped in

ducts ([105]). The real and imaginary components of the effective material properties,

mainly the effective density, bulk modulus and speed sound calculated from the complex

reflection and transmission coefficients are shown in Figure 3.8. The real component of

the speed of sound (Figure 3.8e), which represents the phase velocity of the sound waves

inside the AMM, vanishes below the natural frequency of the piezoelectric disk. This

indicates the presence of stop band in this frequency region, which is similar to what

was measured experimentally by Lee et al. [25] for a membrane type AMM. The effect

of the applied voltage on the effective bulk modulus (Figure 3.8c) for frequencies less

than (900 Hz) is very small compared to its effect on the effective density (Figure 3.8a),

this gives the ability to control the density of the AMM with minimal effect on the bulk

modulus which facilitates using transformation acoustic techniques in the fabrication of

acoustic devices, for example, the realization of acoustic cloaks. Figure 3.8a shows that

with no applied voltage on the piezoelectric plate, and for a frequency range between
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Figure 3.7: Transmission loss calculated analytically (Solid) and using the FEM
(Dashed) with different voltages applied to the piezoelectric disk V = 0, 75, 100V .

200-1500 Hz, the effective density of the membrane ranges increases from large negative

values (about −1500kg/m3) passing by zero density at around 616 Hz up to large positive

values (2000kg/m3) with the increase of the frequency. By applying an electric voltage,

we can shift the resonance of the piezoelectric plate and thus the dispersion of the density.

The magnitude of the shift is dependent on the magnitude of the applied voltage. If we

consider controlling the effective density for a single frequency, Figure 3.9a shows the

dependency of the effective density, as well as the bulk modulus (Figure 3.9b), within

the cell on the applied voltage at different frequencies. For a frequency of 600 Hz (just

below the resonance of the piezoelectric plate under zero voltage) the relation between

the applied voltage and the density is almost linear, up to a voltage of 300 V, with a

sensitivity of −3.9kg/m3/V. This means that a simple controller can be used to adjust

the density of the cell around this frequency. For higher frequencies, just below what is

called the anti-resonance frequency of plate, the density of the plate is very sensitive to

low applied voltages, while it is less sensitive for higher voltages. However, it should be

noted that with a suitable value of applied voltage, the effective density at this frequency

range can be controlled to vary between large positive and large negative values. The

sensitivity of the effective bulk modulus to the applied voltage is very low compared

to its effect on the density; this is suitable for devices whose operation depends on the

spatial distribution of the density with a nearly constant bulk modulus.
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Figure 3.8: Real and imaginary components of the (a,b)effective density , (c,d) ef-
fective Bulk’s modulus and (e,f) effective speed of sound . With no voltage applied
to the piezoelectric disk (Black lines with circular markers) and subjected to a static
voltage of 75V (Red lines with triangular markers) and 150V (Blue lines with diamond

markers).
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Figure 3.9: The effect of the applied voltage on the real component of (a) the effective
density and (b) Bulk’s modulus calculated analytically (Solid) and using the FEM
(Dashed) at a constant frequency of 600Hz (Black lines with circular markers), 1000Hz
(Red lines with triangular markers) and 1400Hz (Blue lines with diamond markers).

3.3.2 Characterization of multiple cells

A periodic arrangement of cells can only be considered as a material, if its effective

material properties are invariant to its length. Thus, in order to fulfill this condition,

the effective material properties of different lengths of the suggested material should be

compared to determine the frequency regions where the effective properties are invariant.

This can be done by characterizing a sample consisting of more than a single cell and

using the same homogenization technique. Analytically, this is done using the relation:

Tt = Tcell
N (3.34)

where N is the number of cells in the sample and Tt is the transfer matrix of the whole

sample.

It should be noted that when calculating the effective material properties of multiple

cells, the branch number m in Equations (2.10) and (2.11) play an important role in

calculating the correct properties. While for a sample consisting of one sample, m can

be safely assumed to be zero (minimum thickness material), for multiple cells this is

usually not the case and a proper method for selecting the branch number should be

used. This problem is demonstrated in Figure 3.10, where the use of a constant branch

number m = 0 yields different material properties for different number of cells used in

the sample (Figure 3.10a). While in Figure 3.10b the correct branch number is selected

using Kramers-Kronig relationship between the real and imaginary parts of the acoustic
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refractive index.

With the proper branch number used, it is clear from Figure 3.10b that the effective

density (material properties) of the studied cell is invariant to the length for the entire

studied frequency range. This also further supports the claim that only one cell is

sufficient to characterize the material using [89] retrieval method, given that the material

is symmetric and the long wavelength region is maintained.

The calculated properties for the active case where a voltage is applied to the cell also
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Figure 3.10: The effect of the variation of the number of samples on the effective
density of the material calculated analytically with no applied voltage to all cells. In
(a) a constant branch number m = 0 is used for all frequencies, while in (b) it is chosen

correctly using Kramers-Kronig relationship.

shows the same invariance to the number of cells (Figure 3.11). This is also true for

the results obtained using the FEM with the observation that using a larger number of

cells to estimate the material properties increases the numerical errors. This happens

because the transmission loss increases with increasing the number of cells, which causes

the readings of the downstream microphones to approach zero; hence, the numerical

errors increase.

3.4 Conclusion

We have introduced and analyzed a novel structure for active membrane based acoustic

metamaterials based on piezoelectric plates in air. The effective material properties of

the metamaterial cell are estimated using the S-parameters retrieval method. An ana-

lytic model based on the acoustic two-port theory, the theory of piezoelectricity and the

pre-stressed plate theory has been developed to analyze the material behavior. A FEM
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Figure 3.11: The effective density calculated from a sample consisting of seven cells
(N = 7) analytically (Solid) and using the FEM (Dashed) with different voltages applied

to the piezoelectric disk V = 0, 75, 100V .

model was constructed to verify the analytic results using ANSYS➤. The analytic re-

sults show excellent agreement with the FEM for all the applied control voltages which

opens the door to its use in the design of active acoustic metamaterials with similar

construction as well as in the implementation of controllers for the effective density of

the cell. The novel design has a frequency dependent effective density ranging from

−2000kg/m3 to 2000kg/m3 within a frequency range of (200-2000 Hz). We could ana-

lytically and numerically demonstrate that the effective density of the material can be

controlled by applying a static voltage to the piezoelectric plate within orders of mag-

nitudes of the uncontrolled density while maintaining a minimum effect on the effective

Bulk’s modulus at frequencies around and less than the resonance of the plate. The

linear nature of the control characteristics of the material cell suggests that simple con-

trol techniques could be used to program each AMM cell to a desired effective density.

This facilitates the construction of devices consisting of large number of AMM cells and

hence the fabrication of devices which have full control on the directivity and dispersion

characteristics of acoustic waves.



Chapter 4

Open loop 2D AMM

In the previous chapter, a new design for 1D active AMM was discussed. Its effective

density was tunable by means of a static external voltage signal. The analysis was

limited to placing the material in 1D circular ducts and the means to support and clamp

the piezoelectric plates were not discussed. In this chapter, the analysis is extended

to 2D materials. This requires taking into consideration the supporting structure of

the material and the geometrical aspects for constructing the material. We propose a

modified design for 2D active MAMs consisting of composite lead-PZT plates supported

on an aluminum frame with air as a background fluid. As with the previous design, the

stiffness of the plate is controlled by the application of an electric potential difference

across the PZT layers; this enables us to control the effective (homogenized) density of

the AMM within a wide range of values ranging from negative to positive density values

passing by near zero conditions.

This chapter is divided into six sections. In the first section, a brief introduction is

presented. In Section 4.1, the construction of the suggested 2D metamaterial cell is

introduced, and the analytical model is extended for the new composite plate. In Sec-

tion 4.2, a numerical model is constructed to verify the analytic model using the FEM.

In Section 4.3, the results obtained from both models are compared, and the overall

performance of the new design is evaluated and analyzed. In Section 4.4, the developed

material is used in the design of a programmable waveguide. Finally, the Chapters main

findings are summarized.

49
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4.1 Theoretical Formulation

The suggested design for a practical 2D active MAM cell (Figure 4.1) is inspired from

the structure of the passive MAM developed by Gu et al.[36]. The main building block

of the structure (Figure 4.1d) consists of a composite lead-PZT circular plate clamped

to a relatively thick (rigid) aluminum structure, and suspended in air. The composite

plate has a diameter of 22 mm, and consists of three different layers. The middle layer

is made of a lead alloy of thickness 50 mathrmµm, and extends through the diameter

of the plate. Two piezoelectric layers made of PZT-5A material are deposited on the

two sides of the middle layer, each of thickness 125 mathrmµm. The two layers have

a shape of an annulus with inner diameter of 14 mm and the same outer diameter as

the plate. They are both polled in the thickness direction, and both have the same

polling direction. The composite plate is fixed to a square aluminum frame of thickness

1 mm. The dimensions of the active MAM cell and the material properties of the differ-

ent components are summarized in Table 4.1 and Table 4.2 respectively. The material

Table 4.1: Summary of the dimensions of the 2D open loop active MAM cell.

Dimension Unit Value

Cell constant (a) mm 23
Outer radius of the composite plate (R2) mm 11
Inner radius of the composite plate (R1) mm 7
Thickness of the lead layer (t1) ¯m 20
Thickness of the piezoelectric layer (t2) ¯m 125
Thickness of the aluminum frame (t3) mm 1

Table 4.2: Properties of the materials used in the construction of the 2D open loop
active MAM cell.

Property Unit PZT-5A Lead aluminum

ρ kg/m3 7500 11000 2700
C11 GPa 132 75.9 102
C12, C23 GPa 73 62 50
C33 GPa 115 75.9 102
e31 C/m2 -4.1 - -
e33 C/m2 14.3 - -
ǫ11 804.6 - -
ǫ33 659.7 - -
Qm = η−1 50 50 -
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properties of the cell are controlled by applying a static electric voltage across the thick-

ness of two annular piezoelectric layers as shown in Figure 4.1d. The applied electric

voltage induces stresses in the piezoelectric layers which changes the tension applied on

the middle circular lead membrane. This in turn changes the acoustic impedance, and

hence the effective material properties of the cell.

A controllable DC voltage source is connected between the outer surfaces of the piezo-

electric layers, which are connected in series. Both are polled in the same direction;

thus, any bending of the composite plate due to incident acoustic waves will cause the

stretching of one layer and the compression of the other. This will cause equal but oppo-

site voltages to be generated by the two layers, and due to the series connection, almost

no time dependent currents will be generated. Thus, for all the subsequent analysis,

open circuit boundary conditions will be assumed for any dynamic analysis of the plate.

The 2D material is constructed by repeating the 1D unit cell (Figure 4.1d) in two or-

thogonal directions to form the 2D unit cell shown in Figure 4.1b. The cell constant a is

assumed to be much smaller than the wavelength of the incident acoustic wave, thus ho-

mogenized effective material properties could be used to describe the wave propagation

in the material.

4.1.1 Characterizing the 2D active MAM cell

One approach to analyze the proposed 2D structure of the AMM cell, shown in Fig-

ure 4.1b, is to consider it as four interconnected 1D cells. This is like what Gu et al.[36]

have done for passive MAM using a lumped parameter model. If the transfer matrix

(scattering matrix) for the 1D cell is known, the 2D cell could be modeled using the

2-Port network shown in Figure 4.1c. To analyze this network, or networks formed by

multiple cells, the formalism developed by Glav and Abom[112] for analyzing two-port

networks will be used. Once the transfer matrix of each element in the cell is known,

the formalism could be used to estimate the equivalent transfer matrix between any

two nodes in the network. For example, to determine the effective properties of the

material represented by Figure 4.1c using only one cell, the formalism could be used to

estimate the transfer matrix between nodes 1 and 2, for the properties in x-direction,

and between 1 and 3 for the properties in y-direction. This could be easily extended to

networks consisting of multiple cells.
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Figure 4.1: A new concept for a 2D active membrane-type metamaterial. (a) A visu-
alization for the construction of the suggested 2D AMM. (b) Schematic representation
for the 2D building block of the material. (c) Acoustic 2-Port representation for the
building block. (d) Schematic representation of the construction of the 1D building

block (1D AMM cell).

4.1.2 Characterizing the 1D building block of the 2D active AMM

Since the 2D cell is modeled in terms of a network of 1D cells, the focus is on estimating

the transfer matrix of the 1D cell in a similar manner to what was done in Chapter 3. For

waves propagating in the x-direction, the suggested cell, shown in Figure 4.1d, consists

of three main layers which are the elastic composite plate and two straight air layers.

The local transfer matrix of every layer is calculated depending on the nature of the

layer. The transfer matrix of the whole 1D metamaterial cell is then estimated using

Equation (2.5) and converted to the scattering matrix form.

The transfer matrices of the straight air layers can be easily determined from Equa-

tion (2.6). In order to determine the transfer matrix of the third layer which is the

elastic plate, the thickness of the composite plate is assumed to be small enough com-

pared to the width of the cell (a) and the incident wavelength; thus, it could be assumed

as a lumped element with lumped impedance (Z). Again, the averaged volume velocity

over the area of the plate (ṽ) will be used to estimate its acoustic impedance. ṽ is given
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by:

ṽ =
1

Acell

(
1

Acell

∫

Acell

ẇdA

)
(4.1)

where Acell is the surface area of the square cell and ẇ is the average point velocity of

the plate.

The lead membrane with the piezoelectric annulus is treated as a composite circular

plate consisting of two regions. The first region is the circular lead membrane with

radius R1, and the second is the outer annular region with inner radius R1 and outer

radius R2. The annular region consists of multiple layers of different materials. The

middle layer is the lead membrane which acts also as a metallic electrode for the lower

and upper piezoelectric PZT layers. The other surfaces of the piezoelectric layers are

coated with thin metallic electrodes. A static voltage V is applied between the two

metallic electrodes which induces in plane stresses in the composite plate. According

to the classical composite thin plate theory, the equations of motion for the traverse

deflection of an axisymmetric transversely isotropic composite plate can be written as

[113]:

Io
∂2w(r, t)

∂t2
+D11∇4w(r, t)−N∇2w(r, t) = p(r, t)

Io =

∫ h

0
ρdz,

Dij =

∫ h

0
Qijz

2dz,

Qij = Cij −
Ci3C3j

C33

(4.2)

where w(r, t) is the transverse deflection of the plate, r is the radial distance from

the center of the plate, N is the in-plane force per unit tangent length, p(r, t) is the

pressure difference between the two sides of the plate, ρ is the mass density of the

different layers, h is the total thickness of the plate and Cij are the elements of the

stiffness matrix of the different layers of the plate. For the piezoelectric layers, since

open circuit electrical boundary conditions are maintained, the stiffness matrix under

constant electric displacement CD will be used. Material damping is included in the

analysis in the form of a complex stiffness matrix CD∗.

CD∗ = CD(1 + ηj) (4.3)
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where η is loss factor inside the material. For harmonic excitation, the incident acoustic

pressure and the deflection of the plate could be written as:

p(r, t) = P (r)ejωt,

w(r, t) = W (r)ejωt
(4.4)

Substituting in Equation (4.2), canceling the exponentials and reordering:

(∇4 − N

D11
∇2 − g4)W (r) =

P (r)

D11
(4.5)

where g is the complex wave number of the flexural waves traveling through the plate:

g4 =
Ioω

2

D11
(4.6)

The solution of Equation (4.5) can be written as the sum of the solution of the homoge-

neous equation and the solution of the particular equation. Since ∇ is a linear operator,

the homogeneous part of Equation (4.5) can be written in the form:

(∇2 − g21)(∇2 + g22)W (r) = 0 (4.7)

where:

g21 =
N +

√
4D2

11g
4 +N

2D11
(4.8)

g22 =
−N +

√
4D2

11g
4 +N

2D11
(4.9)

For a polar coordinate system whose origin is at the center of the circular plate the

complete solution of Equation (4.5) is then:

W (r) =E1J0(g1r) + E2Y0(g1r)

+ E3I0(g2r) + E4K0(g2r)−
P

D11g4

(4.10)

where J0(), I0(), Y0(),K0() are the zeroth order Bessel and modified Bessel functions of

the first and second kind. E1 to E4 are constants to be determined from the boundary

and continuity conditions for each region of the plate in a similar manner to what was

done in Chapter 3.

To calculate the acoustic impedance of the plate it is required to calculate its area
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averaged displacement W̃ which is given by:

W̃ =
1

Acell

(∫ R2

0
2πrW (r)dr

)
(4.11)

The average volume velocity of the composite plate ṽ is then given by:

ṽ =
jωW̃

Acell

(4.12)

The acoustic impedance of the elastic layer Ze can then be calculated from the relation:

Ze =
P

ṽ
(4.13)

Only one issue remains before Equation (4.13) can be used to determine the acoustic

impedance of the composite plate, which is the estimation of the static in-plane forces

Na, Nb. This can be done by solving the static equation of motion for the in-plane

displacements of the composite plate. It is given for axisymmetric displacements of a

transversely isotropic plate by [113]

∂2u(r)

∂r2
+

1

r

∂u(r)

∂r
− u(r)

r2
= 0 (4.14)

The exact solution for Equation (4.14) is given by:

u(r) = E5r +
E6

r
(4.15)

where E5 and E6 are again constants to be determined from the boundary and continuity

conditions for each region of the plate. The in-plane force N is given as a function of

the in-plane displacement by:

N(r) = A11u
′(r) +

A12u(r)

r
−Np

Aij =

∫ h

0
Qijdz

(4.16)

where Np is the in-plane force due to the piezoelectric effect

Np =

∫ h

0
ēk31E

k
3dz (4.17)
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ēk31 is the modified piezoelectric stress coefficient for layer k and it is given by:

ēk31 = ek31 −
Ck
13e

k
33

Ck
33

(4.18)

Ek
3 is the electric field across the thickness of layer k and it is related to the applied

voltage V k and the thickness of the layer tk by:

Ek
3 =

V k

tk
(4.19)

4.2 Numerical Model

To validate the analytic approach, a 3D piezo-acoustic finite element model is devel-

oped using ANSYS➤ commercial software. The model is constructed to mimic the

4-Microphone experimental procedure for the evaluation of the normal incidence sound

transmission [109, 110]. The sample, whose material properties are to be determined,

is placed in a rectangular impedance tube having the same cross-sectional area (Fig-

ure 3.3). As in Chapter 3, it is excited twice using a surface acoustic velocity source

located once at the upstream end of the tube, and the other at the downstream end.

Its response is captured by four virtual microphones located at the positions shown in

Figure 3.3. The distances s, d are chosen as per the guidelines defined by the ASTM

E2611[110]. The readings of the four microphones are then recorded and used to deter-

mine the S-matrix of the sample using the procedure found in [109].

The impedance tube is modeled as two acoustic domains (Upstream and Downstream),

each domain is discretized using 20-node brick acoustic elements (FLUID220), and the

length of each domain is 500 mm long. The piezoelectric layers are discretized using 20-

node brick coupled-field structural elements (SOLID226). The lead layer is discretized

using 20-node brick structural elements (SOLID186). Since the aluminum structure is

very rigid compared to the composite plate, it is modeled as rigid wall boundary con-

ditions for the acoustic domain and fixed boundary conditions for the outer diameter

of the composite plate. An infinite surface boundary condition is applied at the ter-

minations of the impedance tube to model the anechoic terminations suggested by the

4-Microphone procedure. For each surface of the piezoelectric layers, the voltage degrees

of freedom of the nodes forming it are coupled to simulate the effect of the presence of

the thin metallic electrodes.
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The solution is done in two steps; the stresses on the piezoelectric plates due to the ap-

plied voltage are determined using a static structural solution. The stresses calculated

in the first step are then applied as pre-stresses on the composite plate in a linear per-

turbation harmonic analysis with incident acoustic pressure waves [111]. The harmonic

analysis is carried out at frequencies ranging between 400 Hz and 1600 Hz with a fre-

quency step of 20 Hz. The element size of the piezoelectric/structural domain is chosen

so that the error is less than 1% between the estimated first mode of the circular plate

alone using the analytic approach, and that evaluated using numerical modal analysis.

The element size in the acoustic domain is chosen to follow the rule that there should

be at least six elements per wavelength at the maximum frequency of the incident wave.

The maximum frequency allowed in the analysis is limited by the same factors men-

tioned in Section 3.2. For all the tested samples, the upper frequency limit was mainly

limited by the homogenization limit. For the dimensions of the cell in Table 4.1, it is

around 1500 Hz.

For the 2D cell shown in Figure 4.1b, the construction of the cell is the same for acoustic

waves propagating in either x or y directions. This indicates that the material properties

determined from one direction is sufficient to estimate the anisotropic material proper-

ties. The cell has also half symmetry about the normal to the propagation direction,

which suggests that the results obtained from the 1D cell could be used to characterize

the 2D cell. To verify this assumption two different types of samples, shown in Fig-

ure 4.2, are used to estimate the material properties. The first is a sample consisting

of the full construction of the 2D cell (Figure 4.1b), while the second is a simplified

version consisting of only the 1D cell (Figure 4.1d). For the 1D sample (Figure 4.2a),

since its cross section has a quarter symmetry, only a quarter sector of the tube and

the cell is modeled. Symmetry boundary conditions were applied to the structural and

acoustic domains. For the 1D active MAM, the number of cells forming the sample in

the propagation direction are varied from 1 to 7 cells. This is done to check effect of

varying the length of the material on the estimated material properties.

4.3 Results and Discussion

The results obtained from the two types of FEM samples are found to be almost iden-

tical for the same number of cells in the direction of the incident excitation (Figure 4.3
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Figure 4.2: A cross section in the finite element mesh of the (a) 1D building block
sample with quarter symmetry placed in a square impedance tube, and (b) 2D AMM

sample with half symmetry placed in a rectangular impedance tube.

and Figure 4.4). The same observation is noted for the results obtained from the ana-

lytic model whether using the 1D cell or by solving the acoustic network (Figure 4.1c).

Figure 4.3 and Figure 4.5 also show that the calculated properties in the propagation

direction (e.g. x) are independent from those of the direction normal to the propagation

(e.g. y). The voltage applied to the cells normal to the x-direction is kept constant at

zero voltage, and the voltage applied to those normal to the y-direction is varied from 0

to 300 V. No change in the properties estimated in the x-direction were observed. These

two observations also confirm the assumption that the 1D cell shown in Figure 4.1d can

be used to design and characterize the 2D material formed by repeating the same cell

in two orthogonal directions. Figure 4.3 shows the complex transmission and reflec-

tion coefficients obtained using the acoustic 2-Port model and the FEM. The results

are evaluated for three different values of applied voltages. Good agreement is observed

between the two methods for the range of the studied frequencies. Figure 4.5a shows

the Transmission Loss (TL) of a single 1D cell under three different applied voltages.

The effective material properties, mainly the effective density, bulk modulus and speed

of sound, are calculated from the complex reflection and transmission coefficients. Their

real components are shown in Figure 4.4. As with the 1D cell analyzed in Chapter 3, the
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Figure 4.3: The effect of applying different voltages on the amplitude of (a) R and
(b) T . The analytic two-port values are compared to those obtained from the FEM
using one 1D cell in the incident wave propagation direction (x-direction), as well as,

one 2D cell with the voltage being varied on the plates normal to the y-direction.

real component of the speed of sound (Figure 4.4c), which represents the phase velocity

of the sound waves inside the AMM, vanishes below the natural frequency of the com-

posite plate. This indicates the presence of a stop band in this frequency region, which

is similar to what was measured experimentally by Lee et al.[25] for a membrane type

AMM. They attributed the presence of the unusual stop band at this frequency region

to the fact that the elastic restoring forces of the membrane below resonance cause a

step reduction in the acoustic pressure across it. This leads to an exponential decay of

the acoustic waves propagating through the material. From a material point of view,

the effective density turns negative in this band (Figure 4.4a), while the bulk modulus

remains positive (Figure 4.4b); as a result, the speed of sound becomes imaginary, since
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c =
√

B/ρ.

The effect of the applied voltage on the effective bulk modulus (Figure 4.4b) for frequen-

cies less than 700 Hz is small compared to its effect on the effective density (Figure 4.4a).

This enables us to control the density of the AMM with minimal effect on the bulk mod-

ulus in this region. This in turn, facilitates using transformation acoustic techniques in

the fabrication of acoustic devices, for example, the realization of acoustic cloaks. Fig-

ure 4.4a shows that with no applied voltage, and for frequencies between 400-800 Hz,

the effective density of the membrane increases from large negative values (about -200

kg/m3) passing by zero density at around 725 Hz up to large positive values (200 kg/m3)

with the increase of the frequency. These values are however less than those obtained

for the open loop 1D cell in Chapter 3. This is mainly attributed to the geometrical
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restrictions imposed by the 2D analysis in the current case which increase the air volume

inside the cell thus decreasing its density. By applying an electric voltage, we can shift

the resonance of the composite plate, and thus the curve of the density. The magnitude

of the shift is dependent on the magnitude of the applied voltage. If we consider con-

trolling the effective density for a single frequency, Figure 4.6 shows the dependency of

the effective density on the applied voltage at different frequencies. For the frequencies

(600, 720 Hz), i.e. below the resonance of the composite plate under zero voltage, the

relation between the applied voltage and the density is almost linear up to a voltage

of 300 V. This means that a simple controller can be used to adjust the density of the

cell at this frequency range. The effective material properties of different lengths of the
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Figure 4.6: The effect of the applied voltage on the real component of the effective
density, which is calculated analytically (Lines) and using the FEM (Markers) for one

1D cell at three different frequencies namely 600,720 and 800 Hz.

suggested material are compared to determine the frequency regions where the effec-

tive properties are invariant to the length. This can be done by the characterization

of a sample consisting of more than a single cell in the propagation direction using the

same homogenization technique. The results for a sample consisting of four cells in the

propagation direction are shown in Figure 4.5b. Three new peaks appear in the plot

of the transmission loss versus the frequency, that weren’t observed in the single-cell

sample (Figure 4.5a). The calculated effective density, on the other hand, didn’t show

any variation if compared to the single-cell sample (Figure 4.4a). The same observation

was made for samples consisting of more than four cells, with a new peak appearing for
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each added cell and the same estimated effective properties (Figure 4.4a). This confirms

that the effective density (the material properties) of the studied cell is invariant to the

length for the entire studied frequency range. This again supports the claim that only

one cell is sufficient to characterize the material using the retrieval method given in [89],

given that the material is symmetric and the long wavelength region is maintained.
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Figure 4.7: The developed 2-port network model for the reconfigurable waveguide.
The “Air” blocks indicate quarter cell sections terminated by the rigid walls of the

guide. Incident pressure is applied to the node donated Pin.

4.4 Applications

The structure of the 2D active MAMs enables us to control its effective density in two

different directions independently; moreover, the purposed structure can achieve near

zero effective density. AMMs with density-near-zero (DNZ) have been shown to possess

extraordinary sound transmission characteristics [34, 36]. Combining the two advan-

tages enables the developed material to be used in the fabrication of different acoustic

devices which require controlling and manipulating the spatial propagation of acoustic

waves. This includes reconfigurable waveguides, reconfigurable acoustic tunnels, tunable

acoustic cloaks and efficient noise control.

As a demonstration for the capabilities of the new designed cell, a simple controllable

waveguide is constructed. The guide consists of a 69× 46 mm rectangular chamber filled

with the new 2D active MAM and connected to three ducts. The ducts have 23×23 mm

cross sections and are fitted with anechoic terminations at the other ends.

Acoustic waves are incident to the guide from the left duct, and their direction of prop-

agation is manipulated inside the chamber. By controlling the anisotropic effective

density of each cell, the incident acoustic waves can be manipulated to exit the guide
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at any chosen location. This is done by setting the density of the required path for the

wave inside the guide to near zero density, and at the same time setting the density of

the other cells to large negative values which prevents the propagation of acoustic waves

through them. The guide was modeled using the FEM by following a procedure similar

to that mentioned in the Section 4.2. An analytical model for the waveguide was also

constructed using the network model for the 2D cell. The construction of the analytic

network is shown in Figure 4.7. Figures 4.8a and 4.8b show the waveguide when all

cells are set to density near zero, ρeff = 0.2kg/m3. This was done by applying 0 V

on all the cells for an incident wave of frequency 727 Hz. An efficient wave splitting is

observed between the two output ducts. The configuration of the waveguide is changed

in Figures 4.8c and 4.8d, so that the wave propagation is limited to a path in which it is

guided to exit from the upper duct. This was done by setting the density of the cells that

are not on the desired path to -70.15 kg/m3 by applying 300 V to them and leaving the

cells on the path at near zero density. In the same manner, the wave propagation could

be controlled to exit from the lower duct. It is worth mentioning that by increasing the

size of the waveguide, more ports and paths could be added to it. This would enable the

usage of transformation acoustics techniques to create density fields that would allow

for even more complex manipulations of the propagation of acoustic waves.

4.5 Conclusion

We have introduced and analyzed a novel structure for 2D active membrane-type acous-

tic metamaterials based on composite lead-PZT plates in air. The effective material

properties of the metamaterial are estimated using the S-parameters retrieval method.

An analytic model based on the acoustic two-port theory, the theory of piezoelectricity

and the pre-stressed laminated plate theory has been developed to analyze the material

behavior. A FEM model was constructed to verify the analytic results using ANSYS➤.

The analytic results show good agreement with the FEM for all the applied control

voltages, which opens the door to its use in the design of active acoustic metamaterials

with similar construction. The novel design has a frequency dependent effective density

ranging from -200 kg/m3 to 200 kg/m3 within a frequency range of (400-1600 Hz). We

can analytically and numerically demonstrate that the effective density of the material

can be controlled by applying a static voltage to the composite plate. The range of the
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Figure 4.8: The normalized pressure inside the suggested waveguide for an incident
acoustic wave of frequency 727 Hz. The pressure is estimated using the FEM (a)
and (c) and the analytic network model (b) and (d). The incident excitation and the
propagation direction are marked with white arrows. The incident wave is controlled

to (a),(b) split between the two ducts and (c),(d) exit from the upper duct only

controllable density lies within orders of magnitudes of the uncontrolled density while

maintaining a minimum effect on the effective bulk modulus at frequencies below the

resonance of the plate. This is achievable for the 2D cell where the anisotropic density

could be controlled for two orthogonal directions independently from each other. The

capabilities of the new design were demonstrated by the construction of fully reconfig-

urable waveguide in which the direction of propagation of incident acoustic waves could

be arbitrarily programmed and controlled.





Chapter 5

Closed loop 1D AMM

In this chapter, we propose an active 1D AMM whose effective density can be controlled

and programmed to a desired set value. The material unit cell consists of a circular

composite piezoelectric plate clamped in air. The diaphragm consists of two piezoelectric

layers with a brass layer in the middle. The dynamic properties of the material are

manipulated by constructing a feedback loop by measuring the voltage generated by

one of the layers and applying a control signal to the other layer. A vibro-acoustic

analytic model is developed to analyze the behavior of the proposed AMM with the

feedback loop. A single cell of the proposed AMM is fabricated and an experimental

setup is constructed to verify the material properties of the AMM. Several designs for the

control system of the cell are proposed and their performance is evaluated. The effective

density of the cell is then controlled using an outer control loop with an adaptive control

algorithm that estimates the density of the material and adjusts the dynamics of the

cell to achieve the desired density value.

This chapter is divided into eight sections. In Section 5.1, the structure of the building

block of the AMM is introduced. In Section 5.2, an analytic model for the prediction

of the material properties of the introduced AMM is discussed. In Section 5.3, the

stability of the AMM cell under closed loop operation is discussed. In Section 5.4, a test

setup for the experimental evaluation of the material properties of the suggested AMM

is introduced and the experimental and analytic results are compared. In Section 5.5,

several types of controllers for the AMM cell are discussed and their performance is

67
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Table 5.1: Properties of the materials used in the construction of the AMM cell.

Property Unit PZT-4 Brass Silver

ρ kg/m3 7500 8750 10490
C11 GPa 139 169 125
C12, C23 GPa 78 87 74
C33 GPa 115 169 125
e31 C/m2 -5.2 - -
e33 C/m2 15 - -
ǫ11 1475 - -
ǫ33 1300 - -

evaluated. In Section 5.6 a closed feedback loop for controlling the density of the AMM

cell through an adaptive control algorithm is introduced.

5.1 Material Construction

The suggested one dimensional active metamaterial consists of an array of clamped

piezoelectric diaphragms (piezoelectric buzzers) with air as the background material.

The material is formed by repeating the unit cell shown in Figure 5.1 along the shown

propagation (x) direction. The unit cell consists of circular piezoelectric diaphragm

clamped along the circumference at a diameter of 38 mm and the unit cell has a total

length of 10 mm along the propagation direction. The diaphragm consists of three

layers; a brass disk of thickness 140 ¯m in the middle with two piezoelectric layers,

each of thickness 140 ¯m, deposited on each side. The piezoelectric layers are made

from PZT-4 material and they have a diameter of 30 mm. They are covered with silver

electrodes of thickness 10 ¯m from the external sides. The electrodes cover a circle of

diameter 28 mm. The material properties of the different components of the cell are

summarized in Table 5.1.

5.2 Theoretical Formulation

5.2.1 Acoustic impedance of the piezoelectric diaphragm

Considering the piezoelectric diaphragm as a laminated plate. According to the classical

laminated plate theory, the constitutive equations for each orthotropic lamina k can be
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Figure 5.1: Schematic for the construction of the suggested 1D AMM unit cell.

written as [113]:




σ1

σ2

σ6


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
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Q11 Q12 0

Q21 Q22 0

0 0 Q66
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ε1
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ε6
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0 0 e31

0 0 e32
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




E1
E2
E3


 (5.1)

where σ1, σ2, ε1, ε2 are the in-plane normal stresses and strains respectively, σ6, ε6 are

the in-plane shear stress and strain respectively, E1, E2, E3 are the components of the

electric field applied to the lamina, Qij are the plane stress reduced stiffness and e31, e32

are the plane stress reduced voltage coefficients. Qij and eij can be calculated from the

components of the complex elastic compliance matrix C∗ and the piezoelectric matrix

e using the following relations:

Qij = C∗

ij −
C∗
i3C

∗
3j

C∗
33

(5.2)

eij = eij −
C∗
i3

C∗
33

e33 (5.3)
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The complex compliance matrix C∗ includes material damping effects, and it is calcu-

lated by:

C∗ = C(1 + ηj) (5.4)

where C is the compliance matrix and η is the material loss factor.

Given that the layers of the diaphragm are transversely isotropic, have the same orienta-

tion and that their distribution about the mid-plane is symmetric, the deflection of the

diaphragm in the transverse direction is decoupled from the in-plane directions. Hence,

the transverse and the in-plane deflection of the diaphragm are then given by:

(D11∇4 −NF∇2 + Io
∂2

∂t2
)w(r, t) = pi(t) + fP

3 (t) (5.5)

(A11∇2 + Io
∂2

∂t2
)u(r, t) = fP

1 (t) (5.6)

where ∇4 is the bi-harmonic operator, ∇2 is the Laplacian operator, w is the transverse

deflection of the plate, u is the in-plane deflection in the radial direction, NF are the

in-plane forces, pi(t) is the acoustic pressure incident on the diaphragm, Aij are the

extensional stiffnesses and Dij are the bending stiffnesses.

The terms fP
i are determined from the resultant forces NP and moments MP induced

by the piezoelectric effect:

fP
1 = ∇2NP , fP

3 = −∇2MP (5.7)

The in-plane forces due to the piezoelectric effect are only present at the lateral edges of

the area covered by the electrodes. When the electric potential applied to the piezoelec-

tric layers is uniform across the area, the terms fP
1 and fP

3 are reduced to zero except at

the lateral boundaries of the electrode. Assuming rest initial conditions Equations (5.5)

and (5.6) can be converted to the frequency domain by the aide of Laplace transform.

The transformed equation is given by:

(D11∇4 −NP∇2 + I0s
2)W (s) = Pi(s)

(A11∇2 + I0s
2)U(s) = 0

(5.8)
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For an axisymmetric diaphragm, the solutions of Equation (5.8) have the form:

W (r, s) = E1(s)J0(g1(s)r) + E2(s)Y0(g1(s)r)

+ E3(s)I0(g2(s)r) + E4(s)K0(g2(s)r)

− Pi(s)

D11g4(s)

U(r, s) = E5(s)J1(gp(s)r) + E6(s)Y1(gp(s)r)

(5.9)

where g is wave number of the flexural waves traveling through the diaphragm and is

given by:

g4 =
−Ios

2

D11
(5.10)

g1, g2 are given by:

g21 =
−NF +

√
4D2

11g
4 +NF

2D11
(5.11)

g22 =
−NF −

√
4D2

11g
4 +NF

2D11
(5.12)

gp is defined as:

g2p =
−Ios

2

A11
(5.13)

E1 . . . E6 are constants to be determined from the boundary conditions of the plate.

From this point forward, the dependency of the variables on s will be omitted for brief-

ness. Assuming the diaphragm consisting of Nc uniform annular sections. Equation (5.8)

can be solved for each section l and the transverse and in-plane deflections at section l

are then given by:

Wl(r) = E1lJ0(g1lr) + E2lY0(g1lr)

+ E3lI0(g2lr) + E4lK0(g2lr)−
Pi

D11lgkl
4

Ul(r) = E5lJ1(gplr) + E6lY1(gplr)

(5.14)

The constants E1l . . . E6l are determined by the boundary conditions of the diaphragm,

in addition to the continuity conditions between each two neighboring sections. The
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boundary and continuity conditions are hence given by:

W1(0) = finite, U1(0) = finite

Ml(Rl) = Ml+1(Rl), Ql(Rl) = Ql+1(Rl)

Wl(Rl) = Wl+1(Rl),
∂Wl

∂r

∣∣∣∣
Rl

=
∂Wl+1

∂r

∣∣∣∣
Rl

Ul(Rl) = Ul+1(Rl), Nl(Rl) = Nl+1(Rl)

WNc(RNc) = 0,
∂WNc

∂r

∣∣∣∣
RNc

= 0, UNc(RNc) = 0

(5.15)

where Ml(r) is the moment at section l and it is given by:

Ml(r) = −D11l
∂2Wl

∂r2
−D12l

1

r

∂Wl

∂r
−MP

l
(5.16)

Ql(r) is the shear force at section l and it is given by:

Ql(r) = −D11l
∂

∂r

(
∂2Wl

∂r2
+

1

r

∂Wl

∂r

)
(5.17)

Nl(r) is the harmonic in-plane force:

Nl(r) = A11l
∂Ul

∂r
+A12l

Ul(r)

r
+NP

l (5.18)

and NP
l ,MP

l are the resultant forces and moments due to the piezoelectric effect and

they are calculated from the relation:

NP
l =

N∑

k=1

∫ zk+1

zk

e
(k)
31 E

(k)
3 dz (5.19)

MP
l =

N∑

k=1

∫ zk+1

zk

e
(k)
31 E

(k)
3 zdz (5.20)

where E(k)
3 is the traverse electric filed applied to layer k. Equations (5.15) can be

reorganized in matrix form:

ηE = L
Pi

+ L
Pr

(5.21)

where η is a 6Nc × 6Nc matrix which is only dependent on the diaphragm properties

regardless of the excitation, E is a 6Nc×1 vector of all the unknown constants, L
Pi

and

L
Pr

are 6Nc× 1 load vectors caused by the piezoelectric and the pressure excitations on
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the diaphragm. The piezoelectric loads depend on the electric circuits connected to the

piezoelectric layers. The electric charge generated on the piezoelectric layer k in section

l is given in polar form by [114]:

Q(k)
el

= 2πe
(k)
31

∫ Rl

Rl−1

[
r
∂Ul

∂r
+ Ul(r)

]
dr

+2πǫ
(k)
33

∫ Rl

Rl−1

E(k)
3 rdr

−2πe
(k)
31 z

0(k)

∫ Rl

Rl−1

[
r
∂2Wl

∂r2
+

∂Wl

∂r

]
dr

(5.22)

where ǫ
(k)
33 is the electric permittivity under constant stress of piezoelectric layer k and

z0(k) is defined by:

z0(k) =
zk+1 + zk

2
(5.23)

For the part of the piezoelectric layers that is fully covered with electrodes, E(k)
3 could

be written in terms of the potential difference applied to the layer V
(k)
p :

E(k)
3 =

−V
(k)
p

h(k)
(5.24)

where h(k) is the thickness of layer k. Rewriting Equation (5.22) in terms of V
(k)
p and

generated electric current I
(k)
e (s):

I(k)e (s) = sQ(k)
e (s)

= 2πe31s

∫ Rl

Rl−1

[
r
∂Ul

∂r
+ Ul(r)

]
dr − C(k)

p sV (k)
p − 2πe31z

0
ks

∫ Rl

Rl−1

[
r
∂2Wl

∂r2
+

∂Wl

∂r

]
dr

(5.25)

where C
(k)
p is the electric capacitance of layer k:

C(k)
p =

π(R2
l −R2

l−1)ǫ33

h(k)
(5.26)

Equation (5.25) can be used to construct the equivalent electric circuit model for piezo-

electric layer k, which is shown in Figure 5.2 where:

I(k)g (s) = 2πe31s

∫ Rl

Rl−1

[
r
∂Ul

∂r
+ Ul(r, s)

]
dr − 2πe31z

0
ks

∫ Rl

Rl−1

[
r
∂2Wl

∂r2
+

∂Wl

∂r

]
dr (5.27)



Chapter 5. Closed loop 1D AMM 74

Ikg

V k
p

Ck
p

Ikc

Ike
Zk
p

−
+ V k

s

Figure 5.2: An electrical circuit model for piezoelectric layer k connected to an arbi-
trary circuit represented by its Thevenin’s equivalent

I
(k)
g only depends on the deflections of the diaphragm and not the external circuit, it

can be written in matrix form as:

I(k)g = α(k)E (5.28)

where α is a 1 × 6Nc vector whose elements are evaluated from Equation (5.27). The

value of V
(k)
p is determined by the nature of the circuit connect to each layer. Considering

Thevenin’s equivalent circuit shown in Figure 5.2:

I(k)e = I(k)g − C(k)
p sV (k)

p

=
V

(k)
p − V

(k)
s

Z
(k)
p

(5.29)

Rearranging to determine the value of V
(k)
p :

V (k)
p = G(k)

e Z(k)
p I(k)g +G(k)

e V (k)
s (5.30)

where:

G(k)
e =

1

1 + Z
(k)
p C

(k)
p s

(5.31)

For the diaphragm shown in Figure 5.1, the voltage generated by one of the piezoelectric

layers (sensing layer) is measured and fed to a network of reconfigurable electronics (Gc)

which is connected to a voltage amplifier (Ga). The amplifier applies excitation voltage

on the other layer (actuating layer). The presence of the reconfigurable electronics

(reconfigurable controller) in the loop allows for programming the dynamics of the cell in

an arbitrary manner, as long as the stability of the loop is maintained and the maximum

allowable excitation voltage is not reached. Applying Equation (5.30) on the sensing

layer results in:

V s
p = Gs

eR
s
pI

s
g (5.32)
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where the superscript (s) indicates the sensing piezoelectric layer. Similarly, for the

actuating layer:

V a
p = Ga

eR
a
pI

a
g +Ga

eV
a
s (5.33)

where Ra
p is the output impedance of the piezoelectric amplifier. The applied voltage on

the actuating layer V a
s can be calculated from:

V a
s = GcGaV

s
p = GaGcG

s
eR

s
pI

s
g (5.34)

Thus:

V a
p = Ga

eR
a
pI

a
g +Ga

eGaGcG
s
eR

s
pI

s
g (5.35)

Substituting for Iag and Isg using Equation (5.28):

V a
p = Ga

eR
a
pα

aE +Ga
eGaGcG

s
eR

s
pα

sE (5.36)

V s
p = Gs

eR
s
pα

sE (5.37)

Combining Equations (5.19,5.20,5.24,5.36,5.37), the piezoelectric load vector is then:

L
Pi

= φ
s
Gs

eR
s
pα

sE + φ
a
Ga

eR
a
pα

aE + φ
a
GcGaG

a
eG

s
eR

s
pα

sE (5.38)

where φ
s
and φ

a
are 6Nc×1 vectors constructed by substituting by Equations (5.19, 5.20,

5.24) into Equations (5.15). They represent the effect of the applied voltage on the two

piezoelectric layers on the deflection of the diaphragm. Substituting by Equation (5.38)

in Equation (5.21):

ηE = φ
s
Gs

eR
s
pα

sE + φ
a
Ga

eR
a
pα

aE + φ
a
Ga

eGaGcG
s
eR

s
pα

sE + L
Pr

(5.39)

Equation (5.39) can be reorganized in the form:

ηoE = φ
a
Ga

eGaGcG
s
eR

s
pα

sE + L
Pr

(5.40)

and

ηo = η − φ
s
Gs

eR
s
pα

sE +Ga
eR

a
pα

aE (5.41)

where ηo represents the dynamics of the cell with no control action applied on the

actuation layer. The dynamics of the closed loop cell are summarized in the block
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diagram shown in Figure 5.3. The unknown coefficients are then given by:

E =
(
ηo − φ

a
Ga

eGaGcG
s
eR

s
pα

s
)−1

L
Pr

(5.42)

Now that the unknown coefficients are determined, the average displacement of the

diaphragm W̃ is given by:

W̃ =
1

At

∫

At

W (r)dA (5.43)

where At is the total area of the diaphragm. The previous equation could be rewritten

in matrix form

W̃ = αpE + γ (5.44)

where αp is a 1 × 6Nc vector of the coefficients resulting from Equation (5.43) and γ

represents the feed through terms that don’t depend on the boundary conditions. The

impedance of the diaphragm is then given by:

Zdia =
W̃

Pi
(5.45)

η
W(S)Pi

Controller
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+ +αpΦp

αs

Ga

Φa

γ

2 mics 2 micsρo co
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Figure 5.3: A block diagram representing the dynamics of the closed loop cell with
adaptive control

5.3 Stability of the Cell

The controller transfer function Gc can be chosen to set the effective material properties

of the AAM to arbitrary values. However, this must be done while keeping the cell stable

and avoiding any self-sustained oscillations. This is done by examining the open loop
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transfer function of the system GOL. From Figure 5.3, the open loop transfer function

of the cell can be calculated from:

GOL = GcGaG
a
eG

s
eR

s
pα

sηoφ
a

(5.46)

Since the diaphragm is a continuous structure, the estimation of the stability of the

system is not straight forward. The estimated open loop transfer function (GOL) is not

rational; hence, it is difficult to estimate the stability of the cell analytically. It is possible

however to determine the stability margin of the system graphically by examining the

bode plot of GOL around the frequency region targeted by the controller (Gc). Thus,

to ensure the stability of the system, Gc should be chosen to have a decaying response

outside the targeted frequency region.

5.4 Characterization of the AMM cell

The test setup shown in Figure 5.4 is used to characterize the effective material properties

of the cell using the two-source method[110]. The setup has an inner tube diameter

of 25 mm. Three PCB model 378C10 1/4” IEPE microphones are flush mounted to

each tube. Two SEAS W18EX001 100W speakers powered by a Yamaha P3500S audio

amplifier are used to provide upstream and downstream acoustic excitation. The signals

of the microphones are connected to the channels of a NI PXI-4472 eight channel input

module mounted on a NI PXI-1042Q data acquisition system. The sensitivity of each

microphone is calibrated using a B&K 4231 sound calibrator. The relative phase between

them is calibrated using a phase calibrator. The control circuit of the cell is constructed

by connecting the signal of the sensing PZT layer to an input channel of an NI PXI-

7854R multifunction reconfigurable I/O. The output channel of the NI PXI-7854R is

connected to a Piezodrive MX200 200V 1A Piezo Driver, which supplies the voltage

signal to the actuating PZT layer.

A single AMM cell is constructed by clamping a AB4113B commercial bender (piezo-

electric diaphragm) using the mechanical clamp shown in Figure 5.4. The diameter of

the designed cell (38 mm) is different from that of the impedance tubes (25 mm) so

the clamp was designed with a cone adaptor to connect the cell to the upstream and
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Figure 5.4: (a) Schematic for the test setup connections and the construction of the
AMM cell (b) Photo of the actual test setup.
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downstream impedance tubes. The effective material properties of the cell are deter-

mined by exciting the cell with band limited white-noise excitations up to 2000 Hz. For

each measurement 100 readings are recorded and averaged to reduce the measurement

noise. With the controller gain set to zero, open loop cell, the dispersion of the effec-

tive density is estimated experimentally and compared to the analytic results obtained

from the developed model (Figure 5.5). An excellent agreement is observed between the

predicted and measured values over the studied frequency range, even though a com-

mercial diaphragm is used and no special manufacturing techniques were used to ensure

its properties. Figure 5.5 shows that the value of the density approaches zero near the

first resonance frequency, around 1100 Hz. It changes from large negative values for

frequencies below the resonance to large positive values for a certain frequency range

above the first resonance.
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Figure 5.5: The dispersion effective density of the developed AMM characterized
analytically and experimentally. The results obtained without any control applied to
the cell are compared to those obtained (a) using controller 1 (Equation (5.47)) with
Kc=-1000 and Kc=2500 and (b) using controller 2 (Equation (5.48)) with fc=700 Hz
and Kc = 4× 106 and controller 3 (Equation (5.49)) with fc=1300 Hz and Kc=-120.
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5.5 Controller transfer function

The dispersion of the density suggests that shifting the first resonance to lower or higher

frequencies would allow for controlling the effective density within a limited frequency

range near the resonance of the cell. This shift could be done using a lead-lag controller

with the following transfer function:

Gc =
Kc(s+ z1)

(s+ p1)(s+ p2)
(5.47)

The value of the gain Kc controls the amount of the shift and its sign controls its direc-

tion, where the locations of the poles (p1, p2) and the zero (z1) are chosen to maximize the

allowable frequency shift before the system becomes unstable. This controller approach

however limits the controllable frequency range to a small region around the open loop

resonance of the diaphragm. The effect of applying this controller to the cell is shown

in Figure 5.5(a). The parameters of the controller were set to z1=1000, p1=p2=-4500

and K set to 2500 for negative shift and -1000 for positive shift of the resonance. The

values of the poles and zeros were chosen to achieve maximum shift in the resonance of

the cell without causing instability. This was done by shaping the open loop transfer

function of the cell GOL. Good agreement between the predicted and measured disper-

sion of the density was observed for both negative and positive frequency shift controller

configurations.

An alternative approach would be to set the transfer function of the controller so that

it adds an additional resonance frequency to the closed loop transfer function. This

induces a similar behavior to what happens near the open loop resonance at the selected

additional frequency. For frequencies below the open loop resonance, this could be done

by setting the transfer function of the controller Gc to:

Gc =
Kc

s2 + 2ζcωcs+ ω2
c

(5.48)

where ωc = 2πfc and fc is calculated from the target resonant frequency of the controller

in Hz, ζc is damping ratio of the controller and Kc is the controller gain. To control the

density of the cell around a certain target frequency, ωc of the controller could be initially

set to match this frequency. By shifting ωc to higher or lower values, the effective density

could be fully controlled within the reachable limits of the controller. These limits are
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bounded by the values of Kc and ζc which maintain the system’s stability. If the target

frequency is above the open loop resonance, the transfer function could be set to:

Gc =
Kc(s+ z1)

s2 + 2ζcωcs+ ω2
c

(5.49)

where (z1) is an additional zero, used to tune the phase of the open loop transfer func-

tion of the system to ensure its stability. Figure 5.5(b) shows the effect of setting the

controller transfer function to the resonant controllers (Equation (5.48) with ζc=0.04,

Kc = 4× 106 and fc=700 Hz and Equation (5.49) ζc=0.04, Kc=-120 and fc=1300 Hz)

on the dispersion of the density of the cell. The analytic model succeeds in the estima-

tion of the general behavior of the dispersion plots of the cell under the effect of the

two controllers. The resonant controllers achieve their target objective by adding an

additional zero-crossing frequency (additional resonance) near the frequency which they

are targeting.

5.6 Adaptive control of the cell density

The ability to measure the density of the cell in real-time allows for adapting the pa-

rameters of the controller transfer function to achieve a desired density at a specific

frequency. This first requires the density of the cell to be estimated in real-time. A

density estimator is developed based on the same two-source method[110] used in the

measurements. Two microphones at each side of the cell are used to decompose the

acoustic waves passing through the cell and estimate its real-time reflection and trans-

mission coefficients. The two-source method however requires the cell to be excited at

least once from each side in order to evaluate the 4 elements of the scattering matrix.

To overcome this limitation, the fact that the cell is symmetrical in the propagation

direction will be used to reduce the number of excitations to one. This means that the

elements of the scattering matrix could be evaluated in the presence of incident acoustic

waves from any direction. The signals acquired from the microphones are sampled with

a constant sampling time (Ts) until a predetermined number of samples, time window

(Tw), are acquired. The window is then converted to the frequency domain, and the

transfer functions between the microphones are determined and converted to the reflec-

tion and transmission coefficients of the cell[109]. These coefficients are then fed to an
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inverse program which is based on the retrieval method developed by Fokin et al.[89]

to estimate the real-time effective density of the cell. An adaptive control algorithm is

designed to use the frequency content of the incident waves to determine the dominant

frequency of the acoustic waves passing through the cell. It then uses the density es-

timator to determine the effective density of the cell. Knowing the error between the

desired effective density and the required density, it uses a traditional PID controller to

adjust the parameters of the feedback controller (Gc). A discrete PID controller is used

to tune the parameters of the feedback controller. The resonant controller frequency ωc

is determined from the following relation:

ωc = ωco +∆ωc (5.50)

where ωco is the detected frequency of the incident excitation and ∆ωc is the output of

the PID controller.

∆ωc = Kp +
KiTwz

z − 1
+

KdN(z − 1)

(1 +NTw)z − 1
(5.51)

where Kp, Ki and Kd are the proportional, integral and differential gains of the con-

troller, z is the z-transform variable and N is the cutoff frequency of the low pass filter of

the derivative term. The gains of the PID controller as well as the gain of the resonant

controller (Kc) are determined based on the incident frequency (ωco) from a set of tuned

values which are determined offline for each frequency range separately. The damping

of the controller (ζc) is kept constant for all controllers.

To realize the adaptive controller, the signals of the microphones used in the measure-

ment process are branched and connected to a second NI PXI-4472 eight channel input

module mounted on the data acquisition system. The readings from the first input mod-

ule are used in the measurement process, while those of the second input module are

used in the control process. This was done on the hardware level to ensure the complete

separation between the two processes.

The adaptive control algorithm is implemented as a standalone C program using the NI

Labwindows/CVI libraries to interface with the microphones’ signal from the input mod-

ule and to set the parameters of the controller. The flow of the adaptive control algorithm

is summarized in Figure 5.6. To test the performance of the adaptive controller, the cell

is excited using upstream and downstream stepped sine excitations between 500 Hz and

1500 Hz. Each single frequency excitation is applied on the cell for 10 seconds so that
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Estimate the controller parameters using
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Figure 5.6: Flowchart for the procedure of the adaption of the cell density based on
the incident excitation.

the response of the controller completely settles before recording the measurement data.

The effect of applying the adaptive control algorithm on the effective density of the

AMM cell is shown in Figure 5.7(a). It shows that the controller can achieve any desired

density value between -100 kg/m3and 100 kg/m3 including near zero density conditions.

This is achievable for any single frequency between 500 Hz and 1500 Hz. For most of

the studied frequency range, the controller can change the dynamics of the AMM cell to

a value within 10% of the desired density set-point regardless of the open loop density

value at the targeted frequency. An exception to this are frequencies near 1500 Hz,

for a set value of 100 kg/m3, the error reaches about 30%. This defines the limits of

the controllable region of the adaptive controller. The effect of the controller on the

bulk modulus of the AMM is shown in Figure 5.7(b). While the controller varies the

density between large negative and positive values, the bulk modulus of the material
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remained almost constant around that of air Bo ≈ 105N/m2. This is expected, since

membrane type metamaterials are mainly known for unusual effective density[23]. This

is also desirable, the control effort only affects the effective density of the AMM and

has minimal side effects on the effective bulk modulus. An AMM material with fully

controllable material properties could be constructed by implementing a hybrid design,

which incorporates another active element to control the bulk modulus. The time re-

sponse of the controller was also evaluated. Figure 5.8 shows the step response of the

cell when the control point is initially set to zero density and then suddenly changed

to 100 kg/m3. It shows that the cell density settles after around 3 seconds for all the

studied frequencies, with different frequencies having different settling times. This is

expected due to the non-linear nature of the adaptive control algorithm and the use of a

different type of controller for each frequency range. An abnormal behavior is observed

for the step response at 900 and 1300 Hz where the density diverges from the target

set-point, before converging. These frequencies lie between the application regions of

the lead/lag controller and the resonant controller since they are close to the resonance

of the open loop, but not close enough for the lead/lag controller to cover the required

density range of cell. The observed divergence happens because the adaptive control

algorithm is set switch between the two types of controllers at this particular frequency

range if the density set-point is not within the range of one of the controllers.

The achieved performance of the AMM cell opens the door to a set of possible appli-

cations for the developed material. Asymmetric transmission of acoustic waves could

be easily achieved for single tone excitations. Given that the excitation is of a single

sided nature, the material could be programmed to detect the propagation direction

of the incident waves and adjust its density accordingly. The material could be pro-

grammed to work as an active acoustic filter with arbitrary stop (negative density) and

pass (near zero density) bands within the material’s controllable frequency range. The

material could be also programmed to achieve any desired density gradient, given that

a sufficient number of cells is used.

5.7 Conclusion

A design for a one-dimensional active acoustic membrane type metamaterial is intro-

duced. The material consists of clamped composite piezoelectric diaphragms suspended
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Figure 5.7: Dispersion plot of the (a) effective density and (b) Bulk modulus of the
closed loop AMM cell with the adaptive control algorithm. Three different set points for
the controller are compared ρdesired=-100 kg/m3, ρdesired=0 kg/m3 and ρdesired=100

kg/m3. The measured open loop effective density is also plotted as a reference.

Figure 5.8: Step response of the closed loop AMM cell with the adaptive control
algorithm. The density set-point is initially set for zero density and later stepped to

100 kg/m3. This is done for different excitation frequencies.
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in air. The effective density of the material is manipulated by adjusting the dynamic

properties of the diaphragms through a closed loop feedback controller. An analytic

model based on the acoustic two-port theory and the composite laminated plate theory

is developed to predict the behavior of the AMM. Three different types of controllers for

manipulating the material properties of the cell are introduced. An experimental test

setup for the evaluation of the material properties of the AMM is constructed to verify

the analytic results. Good agreement is observed between the measured and predicted

values for the open loop cell. The proposed resonant feedback controllers are verified

to add an additional predetermined resonance frequency to the cell and thus add a

new zero-crossing point for the effective density of the material. An adaptive control

algorithm is developed to achieve a closed loop control over the density of the AMM.

The algorithm estimates the density of the AMM in real-time and adjusts the feedback

control transfer function to reach a predetermined value for density of the material at

the frequency corresponding to maximum incident acoustic pressure amplitude. The

adaptive controller was proven experimentally to set the density of the cell to values

ranging from -100 kg/m3 up to 100 kg/m3 for acoustic waves with frequency between

500 and 1500 Hz. Potential applications for the developed material include controllable

asymmetric sound transmission, programmable active filters and in the manufacturing

of a programmable acoustic superlens.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

Three different designs for active plate-type AMM have been introduced and analyzed.

The three designs involved the use of piezoelectric PZT material to modify the dynamic

behavior of the structure of the AMM. This was done by shifting the resonance fre-

quency of resonators within the structure of the material in the first two designs and by

implementing a closed feedback loop through a reconfigurable digital controller through

the third design. An analytical model was constructed for each design. The three mod-

els involved the use of the acoustic two-port theory, the theory of piezoelectricity and

the thin plate theory. While the suggested design for the first membrane consisted of a

single layered plate. The second and third designs involved the use of composite plates

with lead being used as a substrate in the second design and brass in the third design.

The first two designs were studied analytically and numerically while the third design

was implemented in practice and studied analytically and experimentally.

The first design was an open loop 1D AMM. It has the advantages of having the simplest

construction and the largest achievable effective density compared to the other two;

however, it has practical issues regarding the structure being very brittle.

In an attempt to mitigate the problems that appeared with the first design as well as

study the implications of extending the approach to two dimensions, a more practical

open loop 2D design was proposed. A composite plate was used to enhance the strength

of the structure and the frame used to support the structure was also included in the

87
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analysis. All the numerical results showed excellent agreement with the ones predicted

analytically.

The open loop 1D AMM had a frequency dependent effective density ranging from

−2000 kg
m3 to 2000 kg

m3 within a frequency range up to (2000Hz). The range of reachable

density values was reduced in the second design to ±200 kg
m3 within a frequency range

up to (1600Hz). The 2D construction of the 2D design reduced its operating frequency

range and reachable effective densities compared to the first 1D design. This happened

because of the space limitations imposed by the material being two dimensional; in addi-

tion to the consideration of the supporting structure. For the three designs, the control

action had a minimal effect on the bulk modulus. The results of the 2D active AMM

showed that the effective density of the structure could be controlled for two orthog-

onal directions independently from each other. This means that the structure had an

anisotropic tunable density. The capabilities of the developed 2D material were demon-

strated by the construction of fully reconfigurable wave guide in which the direction of

propagation of incident acoustic waves could be arbitrarily programmed and controlled.

The behavior of the new structure was demonstrated both analytically and numerically.

The third design was for a 1D closed loop AMM. It consists of clamped composite

piezoelectric diaphragms suspended in air. The effective density of the material is ma-

nipulated by adjusting the dynamic properties of the diaphragms through a closed loop

feedback controller. Three controller designs were discussed and analyzed analytically

before being verified experimentally. The experimental test setup was made by manu-

facturing a single cell and placing it between two impedance tubes with two microphones

at each size. The microphones were used to analyze the acoustic waves traveling through

the pipes and estimate the material properties of the cell. Good agreement is observed

between the measured and predicted values of the open loop cell. The same microphones

were used as density sensors and were used to estimate the real-time density of the cell.

This density value was fed to an adaptive control algorithm in a closed loop control

behavior. The experimental results showed that the density of the 1D closed loop cell

could be adapted to any value between ±100 kg
m3 for single tone acoustic waves with

frequency between 500 and 1500 Hz.
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6.2 Future Work

Acoustic metamaterials have been the research focus in the past ten years. Many inter-

esting and unforeseen discoveries and applications are still revealed on a monthly basis.

This rapidly changing field has a lot of still undiscovered phenomena in the theoretical

side, as well as, a lot of opportunities for better practical realizations and more practical

problems to be tackled. The current work considered numerically open loop control for

2D active AMMs and experimentally closed loop control for a single 1D active AMM

cell. A natural extension for this work would be to study the closed loop control of a

multi-cell 1D structure, before extending this analysis to 2D and even 3D structures.

Another path to follow would be to consider the possible applications for the developed

material using the developed tunable density in the realization of different reconfigurable

acoustic devices such as cloaks, lenses, filters, absorbers and sensing applications. An-

other path would be to consider a structure for an AMM whose bulk modulus could

be directly controlled in a similar way to that obtained in the current study. The two

approaches could be later merged to construct a material with fully controllable acoustic

properties. This material properties could be adjusted between negative and positive

values enabling all sorts of control on the propagation of waves inside the material. An-

other trending topic in the field of AMMs is to consider the non-linear behavior that

arises from the geometry of the material or from the embedded elastic structures. The

non-linear behavior have already yielded a set of interesting phenomena causing the

AMM to shift from being perfect conductors to being perfect insulators depending on

the amplitude of the applied excitations[115]. It was also being recently used to increase

the bandwidth of AMM[116].
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 شكر 

أتوجه باʷƅكʛ لأساتʚتى اʚƅيʧ قاموا بالإشʛاف على اʛƅساƅة أ.د. وائل عقل ود. عادل اʸƅباغ، فقʙ قʙموا أود أن 
. وأود أن أشكʛ وهيئوا ƅى الأدوات وبيئة اƅعʺل اʻʺƅاسبة لإتʺامه عوƊا كبيʛا في كل مʛاحل هʚا اƅعʺل ƅى

 ʛعʺيقة به، كʺا أود أن أشكƅه اʱفʛى معƅ هʱاركʷعʺل على ومƅا اʚحه موضوع هʛطƅ ا أ.د. وائل عقلʸيʸخ
 ƅبوصلة.د. عادل اʸƅباغ على تʙخله فى الأوقات اʻʺƅاسبة كلʺا شعʛ أʻƊى قʙ فقʙت ا

تفاصيل اʳʱƅارب اƅʺعʺلية ƅلعʺل خاصة فيʺا يʱعلق  فى ʻƅادى ʶʺƅاعʙته ƅىƄʺا أود أن أشكʛ أ.د. تامʛ ا
 علʦ اʸƅوتيات اʱƅطبيقية.بʴʱليل الإشارات و 

 ʦʶاميكية وزملائى في قʻيʙƅظʺة اƊال الأʳم في مʙقʱʺƅا ʘʴبƅيق اʛكل زملائى فى ف ʛا أود أن أشكʺƄ
اƅقيʺة في اʱʴʺƅوى اʻƅظʛى  لإسهاماتهʚƅʦكʛ م. وئام اʴʶƅار وم. مʙʺʴ طلعʗ حʛب اƅʺيكاتʛوƊيات، وأخص با

ʛعʺل. كʺا أود أن أشكƅا اʚهƅ عʺليةƅارب اʳʱƅواد  واʺƅا ʧلازمة عƅلفية اʵƅى باʙويʜعلى ت ʦاهيʛإب ʙʺʴم. م
ة اʴʱƅكʦ وم. م. أحʺʙ بʛكات على Ɗقاشاتʻا اʛʺʲʺƅة فيʺا يʵص أƊظʺاƅكهʛومغʻاطيʶية اسʻʲʱائية اʸʵƅائص و 

أحʺʙ أبوسʛيع ʶʺƅاعʙتى فى تʻʸيع الأجʜاء اƅعʺلية و د. معاذ فاروقى على Ɗقاشاتʻا اƅʺطوƅة فيʺا يʵص 
م. يʴيى ذكʛيا وم. على اʸʵƅائص. كʺا أود أن أتقʙم باʷƅكʛ لأصʙقائى وزملائى  اسʻʲʱائيةاƅʺواد اʸƅوتية 

 عوƊا كبيʛا في مواقف عʙيʙة يʸعب عليا حʛʸها. زيʧ وم. أحʺʙ اʛƅكايبى وم. أحʺʙ هʷام، حيʘ قʙ قʙمƅ ʗى

لا يʺكʻʻى أيʹا أن أʶƊى دور م. فاطʺة، فقʙ كاƊ ʗƊعʦ اƅعون فى كل ما يʱعلق بالإجʛاءات الإدارية 
 واʻʱƅظيʺية.

 ʦيعهʳʷأبى وأمى على ت ʛى، فأود أن أشكʱعائلƅ اهىʻʱلامƅا ʦعʙƅحلة دون اʛʺƅا Ƌʚهƅ ى لأصلƅ ما كان
هʚا اƅعʺل باʷƅكل وفى اƅوقʗ اƅʺطلوب. كʺا أود أن أشكʛ أخى مʙʺʴ وأخʱى سʺاء  اƅ ʛʺʱʶʺƅى لإƊهاء

 ʶʺƅاعʙتهʦ اʛʺʱʶʺƅة في تʴʹيʛ اƅبياƊات واʛƅسومات اʵƅاصة باʛƅساƅة.

 
 

 





 
 

كثΎفΔ الϠόϔيΔ لϠمΎدة عن طريق دائرة التحكϡ في ال، ϭيتϡ تغذيΔ رجόيΔ بόين الطبΕΎϘ الكϬرϭضغطيΔ لϠغشΎء
تغذيΔ رجόيΔ تلا΅ميΔ تϡ إقΎمتΎϬ بتϘدير قيمΔ الكثΎفΔ الϠόϔيΔ بΎستخداϡ طريΔϘ الميكرϭفϭنΕΎ الأربΔό. تضمن 

 ΎϬيمكن برمجتϭ ΔلΎόف Δتيϭء فلاتر صΎدة الجديدة إنشΎمϠل ΔترحϘالم ΕΎϘالتطبيΕΎء عدسΎإنشϭ  ΔرقΎخ Δتيϭص
 ة تسمح بمرϭر الصΕϭ في اتجΎه ϭاحد.ϭإنشΎء ΃جϬز

 

 ΕاϤϠكΡفتاϤال:  ،Δالرجعي Δيάالتحكم بالتغ ،ΔضغطيϭرϬالك ΩواϤال ،Δالصوتي ΩواϤال
 التحكم التلاؤمى

  





 
 

 الΨϠϤص
 

 Δتيϭاد الصϭئصالمΎالخص ΔئيΎاد  استثنϭهي م ΔعيΎل اصطنϭن الطϭد ϡحج Εذا Ε΂من منش ΎϬόتصني ϡيت
في الخصΎئص الصϭتيΔ لطبيΔό. يمكن التحكϡ المϭجϰ، بحيث تمتϙϠ خصΎئص صϭتيΔ غير مϭجϭدة في ا

لϠمϭاد الصϭتيΔ الخΎرقΔ عن طريق دمج عنΎصر فΎόلΔ في المنشΕ΂ المكϭن منΎϬ المΎدة، ϭيتϡ التحكϡ في 
خصΎئص المΎدة عن طريق إشΎرة كϬربΎئيΔ خΎرجيΔ. هذا التحكϡ يكΎد ينόدϭ ϡجϭده في ϱ΃ نϭع من المϭاد 

 .Δيόالطبي 

 Δتيϭاد الصϭدة لتصنيع المϭجϭالم ΕΎخيص التصميمϠتϭ راضόاست ϡت ΔلΎئص في هذه الرسΎالخص ΔئيΎاستثن
 ΔلبΎالإالسϭΔبيΎيج،  ΔلبΎالس Δتيϭاد الصϭئص المΎلتجنيس خص ΔϔϠالمخت ϕف الطرΎاستكش ϰإل ΔفΎلإضΎب

الϭϠحيΔ النشطΔ استثنΎئيΔ  جديدة لϠمϭاد الصϭتيΕ ΔثلاثΔ تصميمϭΎتطϭيرهΎ لتلائϡ المϭاد النشطΔ. تϡ طرح 
.ΔيϠمόم ΏرΎعن طريق إجراء تجϭ Δرقميϭ ΔيϠيϠتح ϕبطر ϡϬئصΎق من خصϘالتح ϡت Ύئص، كمΎالخص 

التصميϡ المϘترح الأϭل هϭ تصمي΃ ϡحΎدى البόد يتكϭن من ΃قراص مصنϭعΔ من مΎدة كϬرϭضغطيϭ ΔمثبتΔ في 
خΎرجيΔ يتϡ تطبيΎϬϘ عϰϠ الأقراص. تϡ  شΎرة كϬربΎئيΔق إالϭϬاء. يتϡ التحكϡ في الكثΎفΔ الϠόϔيΔ لϠمΎدة عن طري

 Δنظريϭ ΔضغطيϭرϬالك ΔنظريϠل ΔفΎلإضΎب Δتيϭذ الصϔالمن ΕΎئيΎثن Δنظري ϰϠع ϰمبن ϰϠيϠذج تحϭير نمϭتط
لϠتنب΅ بسϙϭϠ المΎدة، كمΎ تϡ التحϘق من النتΎئج التحϠيϠيΔ عن طريΔϘ نمϭذج رقمϰ  الألϭاح الرفيΔό سΎبΔϘ التحميل

لόنΎصر المحدϭدة. تلاحظ ϭجϭد تϭافق ممتΎز بين نتΎئج النمϭذجين في نطϕΎ التردداϭ ΕالجϭϬد بطريΔϘ ا
الكϬربيΔ التي تϡ دراستΎϬ. تظϬر النتΎئج ΃ن الكثΎفΔ الϠόϔيΔ لϠمΎدة المطϭرة يمكن تغييرهΎ لόشرا΃ ΕضΎόف 

ΎلمΎدة. كمΎ تظϬر ΃يض΃ Ύنه يمكن الخΎص ب الانضغΎطالكثΎفΔ الϠόϔيΔ في الحΎلΔ السΎلبΔ دϭن الت΄ثير عϰϠ مΎόمل 
 استخداϡ نظϡ تحكϡ بسيطΔ لبرمجΔ الكثΎفΔ الϠόϔيΔ لϠمΎدة.

 .ΎϬفي ϡيمكن التحك ΔينΎمتب ΔفΎكث Εد ذاΎόالأب ΔئيΎثن Δتيϭاد صϭل لتصنيع مϭالأ ϡير التصميϭتطϭ ديلόت ϡت
 يركϭنيΕ الرصΎصتيتΎنيΕ ز΃لϭاح مركبΔ تتكϭن من شرائح من الرصΎص ϭالتصميϡ المϘترح يتكϭن من 

مثبتΔ بϬيكل من الألϭمينيϡϭ في الϭϬاء. الأمر الذى يتيح التحكϡ في الكثΎفΔ التبΎينيΔ الϠόϔيΔ لϠمΎدة المطϭرة في 
.ΔتيكيΎاست ΔئيΎربϬرة كΎإش ϡستخداΎحدى ب ϰϠين كل عϔϠهين مختΎكل اتج  ϡدة التصميΎئص المΎق من خصϘتحϠل

ϰϠع ϰمبن ϰϠيϠذج تحϭء نمΎإنش ϡت ϰنΎالث  Δنظريϭ ΔضغطيϭرϬالك Δالنظريϭ Δتيϭذ الصϔالمن ΕΎئيΎثن Δنظري
الألϭاح المركبΔ لϠتنب΅ بسϙϭϠ المΎدة. ϭت΃ ϡيضΎ التحϘق من النتΎئج التحϠيϠيΔ بطريΔϘ الόنΎصر المحدϭدة. تظϬر 

هرتز يمكن التحكϡ في كثΎفΔ المΎدة في اتجΎهين مختϔϠين  ˹˹˿˺نتΎئج النمϭذج الثΎن΃ ϰنه دϭن تردد ال
ϭ.ΔلبΎالس ΔفΎف الكثΎόض΃ Εشراόل لϭصϭدة  الΎيمكن إع ΕΎجϭمϠمرشد ل ϡرة في تصميϭدة المطΎالم ϡاستخدا ϡت

بطرϕ رقميϭ ΔتحϠيϠي΃ϭ .ΔظϬرΕ النتΎئج ΃ن مرشد المϭجΕΎ المطϭر ضبطه ϭتϡ التحϘق من ΃دائه لϭظيϔته 
 يمكنه التحكϡ في اتجΎه المϭجΕΎ الصϭتيΔ التي تمر من خلاله.

ثΎلث يمكن من خلاله تΎئج التي تϡ الحصϭل عϠيΎϬ من التصميمين الأϭل ϭالثΎنϰ لإقΎمΔ تصميϡ استخدمΕ الن
التحكϡ في الكثΎفΔ الϠόϔيΔ لϠمΎدة لحظيϭ Ύبشكل كΎمل بحيث يمكن التحكϡ في الكثΎفΔ الϠόϔيΔ لϠمΎدة المطϭرة 

هذا الأمر عن طريق  مرϭرا بΎلكثΎفΔ الصϔريϭ .Δيتϡ˼ ϡ\كج ˹˹˺ϡ˼  ϭ\كج˹˹˺-ϭضبطΎϬ لأى قيمΔ بين 
Δميϭرس ΔϬاجϭ  من Εالترددا ϕΎنط ϰفϭ ΔيϠعΎϔت˾˹˹  ϰن من ˹˹˾˺إلϭلث يتكΎالث ϡهرتز. التصمي Δغشي΃

كϬرϭضغطيΔ مركبϭ ΔمΔϘϠό في الϭϬاء. يتϡ التحكϡ في الطبيΔό الدينΎميكيΔ لϠغشΎء عن طريق تϭصيل دائرة 
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