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A two-dimensional active acoustic metamaterial with controllable anisotropic density is intro-
duced. The material consists of composite lead-lead zirconate titanate plates clamped to an alu-
minum structure with air as the background fluid. The effective anisotropic density of the material
is controlled, independently for two orthogonal directions, by means of an external static electric
voltage signal. The material is used in the construction of a reconfigurable waveguide capable of
controlling the direction of the acoustic waves propagating through it. An analytic model based on
the acoustic two-port theory, the theory of piezoelectricity, the laminated pre-stressed plate theory
and the S-parameters retrieval method is developed to predict the behavior of the material. The
results are verified using the finite element method. Excellent agreement is found between both
models for the studied frequency and voltage ranges. The results show that, below 1600 Hz, the
density is controllable within orders of magnitude relative to the uncontrolled case. The results also
suggest that simple controllers could be used to program the material density towards full control
of the directivity and dispersion characteristics of acoustic waves.

PACS numbers: PACS: 40.Dx, 40.Fz, 50.Gf

I. INTRODUCTION

Acoustic metamaterials (AMM) are artificial materi-
als with engineered sub-wavelength structures that pos-
sess acoustic material properties which are not readily
available in nature including negative mass density [1, 2],
negative bulk modulus [3, 4], double negative properties
[5, 6] and large anisotropic properties [7–9]. With the aid
of transformation acoustics techniques, these anomalous
properties could be spatially distributed to construct de-
vices which were otherwise difficult to fabricate; examples
of such devices include acoustic superlens [10], acoustic
cloaking [11–13] and nearly perfect sound absorbers [14].
AMM have been realized using different approaches.
For instance, they were constructed by the use of sub-
wavelength sonic crystals consisting of cylindrical scat-
terers in a background fluid [15]. Another approach is
based on the use of sub-wavelength local resonators em-
bedded in a background fluid. This was demonstrated
by several techniques including the use of mass-in-mass
AMM in which the unit cell of the material consists of
a solid core material with relatively high density and a
coating of elastically soft material [16], an array of elastic
membranes placed transversely in a wave guide [2, 17, 18],
arrays of Helmholtz resonators flush mounted to the walls
of a wave guide [6, 19], as well as AMM with both elas-
tic membranes and Helmholtz resonators/side branches
[20, 21]. Another approach incorporates the use of elastic

∗ a.allam@eng.asu.edu.eg; Corresponding author.

plates with local resonators in the form of mass spring
resonators [22], or resonating composite stubs [23, 24].
The nature of AMM allows for controlling their mate-
rial properties by integrating active elements inside their
structure. Active piezoelectric patches were used to con-
trol the band gaps present in the material[25–29], con-
struct tunable elastic waveguides[30, 31] and even control
the directivity of elastic waves[27, 32].
Membrane type Acoustic Metamaterials (MAM) have
a relatively simple cell structure which facilitates their
characterization and implementation; nevertheless, they
operate in a limited frequency range; moreover, be-
cause of their resonant nature, they are very sensitive
to geometrical variations in the membrane structure and
boundary conditions. To overcome these limitations, as
well as provide a mean to control the effective proper-
ties of the material, active elements have recently been
used in MAM in order to construct active membrane-
type acoustic metamaterials (AMAM). These elements
are used to control the material properties of AMAM,
and to enhance the frequency range of the desired mate-
rial properties. This has been first demonstrated by Akl
and Baz [33–35], where they used acoustic cavities with
walls made of piezoelectric diaphragms. By controlling
the stiffness of the diaphragms they were able to control
the effective density of the material. Their cell design
however was based on water as a background material
in the cavity, in addition to the need of a complex feed-
back control system. Chen et al. [36] suggested the use
of gradient magnetic fields to actively tune the material
properties of MAM. They suggested an AMAM cell made
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of an aluminum circular ring with a magnetorheological
elastomer at the center. They used a magnetic field to
control the stiffness of the elastomer and hence the ef-
fective density. Their approach however was limited to
tuning the effective properties of the cell near the first
mode of the membrane. Xiao et al. [37] suggested the
use of an electric field formed between a fishnet electrode
and a metal coated central platelet attached to a circular
rubber membrane. Their design required the application
of voltages exceeding 300 V to control the effective den-
sity within a limited frequency range.
Aiming for a simpler and hence more practical approach,
we propose a novel design for AMAM consisting of com-
posite lead-PZT plates supported on an aluminum frame
with air as a background fluid. The stiffness of the plate
is controlled by the application of an electric potential
difference across the PZT layers; this enables us to con-
trol the effective (homogenized) density of the AMAM
within a wide range of values ranging from negative to
positive density values passing by near zero conditions.
This is done with a limited effect on the effective bulk
modulus and thus directly controlling the effective speed
of sound in the material. This kind of control would
open the door for the realization of various devices whose
operation depends on the spatial distribution of density
between positive and negative values, as well as density
near zero (DNZ) applications.
This work is divided into six sections. In the first sec-
tion a brief introduction is presented. In the ‘Theoretical
formulation’ section, the construction of the suggested
metamaterial cell is introduced, and a retrieval approach
for the characterization of passive AMM is extended to
be applied for active AMM. In the ‘Numerical model’
section, a numerical model is constructed to verify the
analytic model using the finite element method (FEM).
In the ‘Results and discussion’ section, the results ob-
tained from both models are compared, and the overall
performance of the new design is evaluated and analyzed.
In the ‘Applications’ section the developed material is
used the design of a programmable waveguide. Finally,
a brief summary of the conclusion and outlines of the
future work are presented.

II. THEORETICAL FORMULATION

The suggested design for a practical 2D AMAM cell
(Fig. 1) is inspired from the structure of the passive
MAM developed by Gu et al.[38]. The main building
block of the structure (Fig. 1d) consists of a compos-
ite lead-PZT circular plate clamped to a relatively thick
(rigid) aluminum structure, and suspended in air. The
composite plate has a diameter of 22 mm, and consists
of three different layers. The middle layer is made of a
lead alloy of thickness 50 µm, and extends through the
diameter of the plate. Two piezoelectric layers made of
PZT-5A material are deposited on the two sides of the
middle layer, each of thickness 125 µm. The two lay-

ers have a shape of an annulus with inner diameter of
14 mm and the same outer diameter as the plate. They
are both polled in the thickness direction, and both have
the same polling direction. The composite plate is fixed
to a square aluminum frame of thickness 1 mm. The di-
mensions of the AMAM cell and the material properties
of the different components are summarized in Table I
and Table II respectively.

TABLE I. Summary of the dimensions of the AMAM cell.

Dimension Unit Value

Cell constant (a) mm 23
Outer radius of the composite plate (R2) mm 11
Inner radius of the composite plate (R1) mm 7
Thickness of the lead layer (t1) µm 20
Thickness of the piezoelectric layer (t2) µm 125
Thickness of the aluminum frame (t3) mm 1

TABLE II. Properties of the materials used in the construc-
tion of the AMAM cell.

Property Unit PZT-5A Lead aluminum

ρ kg/m3 7500 11000 2700
C11 GPa 132 75.9 102
C12, C23 GPa 73 62 50
C33 GPa 115 75.9 102
e31 C/m2 −4.1 - -
e33 C/m2 14.3 - -
ε11 804.6 - -
ε33 659.7 - -
Qm = η−1 50 50 -

The material properties of the cell are controlled by
applying a static electric voltage across the thickness of
two annular piezoelectric layers as shown in Fig. 1d.
The applied electric voltage induces stresses in the piezo-
electric layers which changes the tension applied on the
middle circular lead membrane. This in turn changes
the acoustic impedance, and hence the effective material
properties of the cell.
A controllable DC voltage source is connected between
the outer surfaces of the piezoelectric layers, which are
connected in series. Both are polled in the same direc-
tion; thus, any bending of the composite plate due to
incident acoustic waves will cause the stretching of one
layer and the compression of the other. This will cause
equal but opposite voltages to be generated by the two
layers, and due to the series connection almost no time
dependent current will be generated. Thus, for all the
subsequent analysis open circuit boundary conditions will
be assumed for any dynamic analysis of the plate.
The 2D material is constructed by repeating the 1D unit
cell (Fig. 1d) in two orthogonal directions to form the 2D
unit cell shown in Fig. 1b. The cell constant a is assumed
to be much smaller than the wavelength of the incident
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acoustic wave, thus homogenized effective material prop-
erties could be used to describe the wave propagation in
the material. One of the methods for estimating these
homogenized properties is the acoustic two-port theory,
which is introduced briefly in the following section.

A. Acoustic two-port theory

The acoustic two-port theory, also known as ‘Acous-
tic transmission line theory’, is commonly used to ana-
lyze acoustic duct networks at low frequencies [39]. It
has recently been used to characterize AMM for different
configurations [20, 40, 41]. One of the main elements of
the acoustic two port theory is the transfer matrix which
relates the acoustic pressure (p) and volume velocity (v)
at point a to the pressure and volume velocity at point b
through the relation:[

pa
va

]
= T

[
pb
vb

]
,T =

[
T11 T12
T21 T22

]
(1)

Equation (1) is useful when connecting two networks in
series, as it is the case in layered AMM. Given a metama-
terial cell consisting of n cascaded layers with different
material properties, the transfer matrix of the whole cell
can be written as:

T cell = T 1T 2 . . .T n (2)

Where T 1,T 2, . . . ,T n are the transfer matrices of each
layer. For an acoustic layer with acoustic impedance Zn
and thickness tn, the transfer matrix can be calculated
from the relation [39]:

T n =

[
cos (kntn) jZn sin (kntn)

j sin (kntn)/Zn cos (kntn)

]
(3)

Where kn = ω/cn is the wave number of the acoustic
wave in layer n, ω is the angular frequency of the inci-
dent acoustic wave, cn is the speed of sound in the layer
and j =

√
−1 is the engineering complex number. An-

other important element of the acoustic two port theory
is the scattering matrix which relates the incident and
scattered wave pressures on an acoustic sample (Fig. 2).
The scattering matrix formulation is given by:[

p−a
p+b

]
= S

[
p+a
p−b

]
,S =

[
S11 S12

S21 S22

]
(4)

Where p±a , p
±
b are the complex pressures traveling in the

positive and negative directions at points a and b respec-
tively. The scattering matrix can be calculated from the
elements of the transfer matrix from[42]:

S =

[
1 −T11 − T12

Zb

− 1
Za
−T21 − T22

Zb

]−1 [
−1 T11 − T12

Zb

− 1
Za

T21 − T22

Zb

]
(5)

Where Za and Zb are the acoustic impedance at points
a and b. The elements of the scattering matrix represent
the complex pressure reflection and transmission coef-
ficients (R, T ) for incident upstream and downstream
acoustic waves. For geometrically symmetric AMM cells
the scattering matrix can be written as:

S =

[
R T
T R

]
(6)

B. Retrieval of the effective material properties

The effective material properties of AMM can be esti-
mated by computing the elements of the transfer matrix
or the scattering matrix of the material either analyti-
cally from the constitutive layers of the cell, experimen-
tally or numerically. These elements are then compared
to those of a homogeneous acoustic layer and the mate-
rial properties are evaluated. Given that the elements of
the transfer matrix for an AMM sample are determined,
the effective material properties can be estimated using
equation (3). For example, assuming that the effective
parameters are Zeff , neff , teff , they can be determined
using:

neff =
±cos−1(T11) + 2πm

koteff
, Zeff =

−jT12
sin(neffkoteff )

(7)

Where neff = co
ceff

=
keff

ko
is the effective refractive index

of the material, co, ceff are the speed of sound in air and
the effective speed of sound in the material respectively,
ko is the acoustic wave number of the incident wave in air,
m = 0, 1, 2, ... . An equivalent approach employs the use
of the Scattering matrix elements (S-parameters). This
approach was first introduced in the electromagnetic do-
main [43–45] and later adapted to the acoustic domain
[46]. It was used to calculate the effective constitutive
material properties of an AMM from measuring the S-
parameters from a sample consisting of a few number of
cells down to a sample consisting of a single symmetric
metamaterial cell [9, 40, 47, 48].
Using the S-parameters (R,T ) instead of the transfer ma-
trix elements the effective parameters Zeff , neff can be
calculated by [46]:

neff =
−j ln(φ) + 2πm

kod
, Zeff =

ρocoq

1− 2R+R2 − T 2
(8)

Where

q = ±
√

(R2 − T 2 − 1)2 − 4T 2, φ =
1−R2 + T 2 + q

2T
(9)
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FIG. 1. A new concept for a 2D active membrane-type metamaterial. (a) A visualization for the construction of the suggested
2D AMAM. (b) Schematic representation for the 2D building block of the material. (c) Acoustic 2-Port representation for the
building block. (d) Schematic representation of the construction of the 1D building block (1D AMAM cell).
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FIG. 2. Four microphone setup for estimating the scattering matrix of an acoustic sample.

Zeff , neff are related to the effective density and the
effective bulk modulus of the AMM (ρeff , Beff ) by:

Zeff = ρeffceff , n
2
eff =

ρeffc
2
o

Beff
(10)

Reordering the equations, the effective properties can
thus be calculated from

ρeff =
neffZeff

co
, Beff =

Zeffco
neff

(11)

Two issues must be addressed before equations (7) to (11)
can be used to uniquely determine the effective material
properties of the AMM. The First is the estimation of the
sign of neff . For passive AMM this issue is addressed by
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imposing the real part of the acoustic impedance to be
positive Real(Z) ≥ 0, or the imaginary component of the
refractive index to be negative Imag(neff ) ≤ 0. These
constraints are generally not applicable to active AMM;
nevertheless, assuming that the input energy to the cell
is very small compared to the incident acoustic energy,
these conditions should still be applicable. For the sug-
gested cell, the applied voltage is considered to be static
and thus virtually no energy is supplied to the cell. The
second issue is the branching problem, which concerns
the correct estimation of the branch number m. Fokin et
al. [46] suggested determining the effective parameters of
a minimum thickness AMM cell, for which m is zero, and
using this solution to estimate higher frequencies. Zhu et
al. [40] suggested using an iterative approach to ensure
the continuity of the parameters. On the other hand,
Szabo et al. [45] suggested a more rigorous approach
to estimate the branch number. They suggested an al-
gorithm based on Kramers-Kronig relationship between
the imaginary and real components of n which uniquely
determines the value of m. While their algorithm was
only developed for electromagnetic metamaterials it has
been reported to be used in acoustics [49]. And since it
depends on fundamental physical relations based on the
principle of causality [50], it can be used directly for the
acoustic domain.

C. Characterizing the 2D AMAM cell

One approach to analyze the proposed 2D structure
of the AMAM cell, shown in Fig. 1b, is to consider it
as four interconnected 1D AMAM cells. This is similar
to what Gu et al.[38] have done for passive MAM using
a lumped parameter model. Assuming that the transfer
matrix (scattering matrix) for the 1D cell is known, the
2D cell could be modeled using the 2-Port network shown
in Fig. 1c. In order to analyze this network, or net-
works formed by multiple cells, the formalism developed
by Glav and Abom[51] for analyzing two-port networks
will be used. Once the transfer matrix of each element in
the cell is known, the formalism could be used to estimate
the equivalent transfer matrix between any two nodes in
the network. For example, in order to determine the ef-
fective properties of the material represented by Fig. 1c
using only one cell, the formalism could be used to esti-
mate the transfer matrix between nodes 1 and 2, for the
properties in x-direction, and between 1 and 3 for the
properties in y-direction. This could be easily extended
to networks consisting of multiple cells.

D. Characterizing the 1D AMAM cell

Since the 2D cell is modeled in terms of a network of
1D cells, the focus is on estimating the transfer matrix
of the 1D cell. For waves propagating in the x-direction,
the suggested cell, shown in Fig. 1d, consists of three

main layers which are the elastic composite plate and
two straight air layers. The local transfer matrix of ev-
ery layer is calculated depending on the nature of the
layer. The transfer matrix of the whole 1D metamaterial
cell is then estimated using equation (2) and converted
to the scattering matrix form.
The transfer matrices of the straight air layers can be eas-
ily determined from equation (3). In order to determine
the transfer matrix of the third layer which is the elastic
plate, the thickness of the composite plate is assumed to
be small enough compared to the width of the cell (a)
and the incident wavelength; thus, it could be assumed
as a lumped element with lumped impedance (Z). For a
lumped element the transfer matrix is given by [39]:

T =

[
1 Z
0 1

]
(12)

Where the acoustic impedance of a lumped element (Z)
can be calculated from:

Z =
p

v
(13)

Since the traverse velocity of the elastic plate is not
uniform across its area, the averaged volume velocity
over the area of the plate (ṽ) will be used to estimate its
acoustic impedance. ṽ is given by:

ṽ =
1

Acell

(
1

Acell

∫
Acell

ẇdA

)
(14)

Where Acell is the surface area of the square cell and ẇ
is the average point velocity of the plate.
The acoustic impedance of passive clamped elastic plates
is a classical problem in acoustics [52], however we shall
consider the active case where the plate is subjected to
stresses caused by the piezoelectric effect. The lead mem-
brane with the piezoelectric annulus will be treated as a
composite circular plate consisting of two regions. The
first region is the circular lead membrane with radius R1,
and the second is the outer annular region with inner ra-
dius R1 and outer radius R2. The annular region consists
of multiple layers of different materials. The middle layer
is the lead membrane which acts also as a metallic elec-
trode for the lower and upper piezoelectric PZT layers.
The other surfaces of the piezoelectric layers are coated
with thin metallic electrodes. A static voltage V is ap-
plied between the two metallic electrodes which induces
in plane stresses in the composite plate. According to
the classical composite thin plate theory, the equations
of motion for the traverse deflection of an axisymmetric
transversely isotropic composite plate can be written as
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[53]:

Io
∂2w(r, t)

∂t2
+D11∇4w(r, t)−N∇2w(r, t) = p(r, t)

Io =

∫ h

0

ρdz,

Dij =

∫ h

0

Qijz
2dz,

Qij = Cij −
Ci3C3j

C33
(15)

Where w(r, t) is the transverse deflection of the plate, r
is the radial distance from the center of the plate, N is
the in-plane force per unit tangent length, p(r, t) is the
pressure difference between the two sides of the plate, ρ
is the mass density of the different layers, h is the to-
tal thickness of the plate and Cij are the elements of
the stiffness matrix of the different layers of the plate.
For the piezoelectric layers, since open circuit electrical
boundary conditions are maintained, the stiffness matrix
under constant electric displacement CD will be used.
Material damping is included in the analysis in the form
of a complex stiffness matrix CD∗.

CD∗ = CD(1 + ηj) (16)

Where η is loss factor inside the material. For harmonic
excitation the incident acoustic pressure and the deflec-
tion of the plate could be written as:

p(r, t) = P (r)ejωt,

w(r, t) = W (r)ejωt
(17)

Substituting in equation (15), canceling the exponentials
and reordering:

(∇4 − N

D11
∇2 − g4)W (r) =

P (r)

D11
(18)

Where g is the complex wave number of the flexural
waves traveling through the plate:

g4 =
Ioω

2

D11
(19)

The solution of equation (18) can be written as the sum
of the solution of the homogeneous equation and the so-
lution of the particular equation. Since ∇ is a linear
operator, the homogeneous part of equation (18) can be
written in the form:

(∇2 − g21)(∇2 + g22)W (r) = 0 (20)

Where:

g21 =
N +

√
4D2

11g
4 +N

2D11
(21)

g22 =
−N +

√
4D2

11g
4 +N

2D11
(22)

For a polar coordinate system whose origin is at the cen-
ter of the circular plate the complete solution of equa-
tion (18) is then:

W (r) =E1J0(g1r) + E2Y0(g1r)

+ E3I0(g2r) + E4K0(g2r)−
P

D11g4
(23)

Where J0(), I0(), Y0(),K0() are the zeroth order Bessel
and modified Bessel functions of the first and second
kind. E1 to E4 are constants to be determined from
the boundary and continuity conditions for each region
of the plate.
In order to calculate the acoustic impedance of the plate
it is required to calculate its area averaged displacement

W̃ which is given by:

W̃ =
1

Acell

(∫ R2

0

2πrW (r)dr

)
(24)

The averaged volume velocity of the composite plate ṽ is
then given by:

ṽ =
jωW̃

Acell
(25)

The acoustic impedance of the elastic layer Ze can then
be calculated from the relation:

Ze =
P

ṽ
(26)

Only one issue remains before equation (26) can be used
to determine the acoustic impedance of the composite
plate, which is the estimation of the static in-plane forces
Na, Nb. This can be done by solving the static equation of
motion for the in-plane displacements of the composite
plate. It is given for axisymmetric displacements of a
transversely isotropic plate by [53]

∂2u(r)

∂r2
+

1

r

∂u(r)

∂r
− u(r)

r2
= 0 (27)

The exact solution for equation (27) is given by:

u(r) = E5r +
E6

r
(28)

Where E5 and E6 are again constants to be determined
from the boundary and continuity conditions for each
region of the plate. The in-plane force N is given as a
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function of the in-plane displacement by:

N(r) = A11u
′(r) +

A12u(r)

r
−Np

Aij =

∫ h

0

Qijdz

(29)

Where Np is the in-plane force due to the piezoelectric
effect

Np =

∫ h

0

ēk31E
k
3dz (30)

ēk31 is the modified piezoelectric stress coefficient for layer
k and it is given by:

ēk31 = ek31 −
Ck13e

k
33

Ck33
(31)

Ek3 is the electric field across the thickness of layer k and
it is related to the applied voltage V k and the thickness
of the layer tk by:

Ek3 =
V k

tk
(32)

III. NUMERICAL MODEL

In order to validate the analytic approach a 3D Piezo-
Acoustic Finite Element Model (FEM) is developed using
ANSYS commercial software. The model is constructed
to mimic the 4-Microphone experimental procedure for
the evaluation of the normal incidence sound transmis-
sion [54, 55]. The sample, whose material properties are
to be determined, is placed in a rectangular impedance
tube having the same cross-sectional area (Fig. 2). It
is excited twice using a surface acoustic velocity source
located once at the upstream end of the tube, and the
other at the downstream end. Its response is captured by
four virtual microphones located at the positions shown
in Fig. 2. The distances s, d were chosen as per the guide-
lines defined by the ASTM E2611[55]. The readings of
the four microphones are then recorded and used to de-
termine the S-matrix of the sample using the procedure
found in [54].
The impedance tube is modeled as two acoustic domains
(Upstream and Downstream), each domain is discretized
using 20-node brick acoustic elements (FLUID220), and
the length of each domain is 500 mm long. The piezoelec-
tric layers were discretized using 20-node brick coupled-
field structural elements (SOLID226). The lead layer
was discretized using 20-node brick structural elements
(SOLID186). Since the aluminum structure is very rigid
compared to the composite plate, it was modeled as rigid
wall boundary conditions for the acoustic domain and
fixed boundary conditions for the outer diameter of the
composite plate. An infinite surface boundary condition

was applied at the terminations of the impedance tube
to model the anechoic terminations suggested by the 4-
Microphone procedure. For each surface of the piezoelec-
tric layers, the voltage degrees of freedom of the nodes
forming it were coupled to simulate the effect of the pres-
ence of the thin metallic electrodes.
The solution is done in two steps; the stresses on the
piezoelectric plates due to the applied voltage are de-
termined using a static structural solution. The stresses
calculated in the first step are then applied as pre-stresses
on the composite plate in a linear perturbation harmonic
analysis with incident acoustic pressure waves [56]. The
harmonic analysis was carried at frequencies ranging be-
tween 400 Hz and 1600 Hz with a frequency step of
20 Hz. The element size of the piezoelectric/structural
domain was chosen so that the error is less than 1% be-
tween the estimated first mode of the circular plate alone
using the analytic approach, and that evaluated using nu-
merical modal analysis.
The element size in the acoustic domain was chosen to
follow the rule that there should be at least six elements
per wavelength at the maximum frequency of the incident
wave. The maximum frequency allowed in the analysis
is limited by two factors:

1. In order to maintain plane wave propagation in the
impedance tube the upper frequency limit should
be defined as [55]:

fu <
co
2d

(33)

Where co is the speed of sound in the tube and d
is the largest dimension of the cross-section of the
impedance tube.

2. The homogenization limit of the AMM cell which
was chosen so that the wavelength of the incident
wave was at least an order of magnitude larger than
the largest dimension of the cell in the propagation
direction i.e.:

fu <
co

10a
(34)

Where a is the width of the AMM cell.

For all the tested samples the upper frequency limit was
mainly limited by the homogenization limit. For the di-
mensions of the cell in Table I, it was found to be around
1500 Hz.
For the 2D AMAM cell shown in Fig. 1b, the construc-
tion of the cell is the same for acoustic waves propagating
in either x or y directions. This indicates that the mate-
rial properties determined from one direction is sufficient
to estimate the anisotropic material properties of the ma-
terial. The cell has also half symmetry about the normal
to the propagation direction, which suggests that the re-
sults obtained from the 1D AMAM cell could be used to
characterize the 2D cell. To verify this assumption two
different types of samples, shown in Fig. 3, were used in
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to estimate the material properties. The first is a sam-
ple consisting of the full construction of the 2D cell (Fig.
1b). While the second was a simplified version consisting
of only the 1D AMAM cell (Fig. 1d). For the 1D sample
(Fig. 3a), since its cross section has a quarter symmetry,
only a quarter sector of the tube and the cell was mod-
eled. Symmetry boundary conditions were applied to the
structural and acoustic domains. For the 1D AMAM, the
number of cells forming the sample in the propagation di-
rection were varied from 1 to 7 cells. This was done to
check effect of varying the length of the material on the
estimated material properties.

(a)

Air

PZT

Lead

Downstream

Impedance Tube

Composite Plate

(b)

Composite Plates

Downstream Impedance

Tube

Air

PZT

Lead

z

y
x

FIG. 3. A cross section in the finite element mesh of the
(a) 1D AMAM sample with quarter symmetry placed in a
square impedance tube, and (b) 2D AMAM sample with half
symmetry placed in a rectangular impedance tube.

IV. RESULTS AND DISCUSSION

The results obtained from the two types of FEM sam-
ples were found to be almost identical for the same num-
ber of cells in the direction of the incident excitation (Fig.
4 and Fig. 5). The same observation was noted for the
results obtained from the analytic model whether using
the 1D cell or by solving the acoustic network (Fig. 1c).
Fig.4 and Fig. 6 also show that the calculated properties
in the propagation direction (e.g. x) were independent

from those of the direction normal to the propagation
(e.g. y). The voltage applied to the cells normal to the
x-direction was kept constant at zero voltage, and the
voltage applied to those normal to the y-direction was
varied from 0 to 300 V . No change in the properties esti-
mated in the x-direction were observed. These two obser-
vations also confirm the assumption that the 1D AMAM
cell shown in Fig.1d can be used to design and char-
acterize the 2D material formed by repeating the same
cell in two orthogonal directions. Fig. 4. shows the
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FIG. 4. The effect of applying different voltages on the am-
plitude of (a) R and (b) T . The analytic two-port values
are compared to those obtained from the FEM using one 1D
AMAM cell in the incident wave propagation direction (x-
direction), as well as, one 2D AMAM cell with the voltage
being varied on the plates normal to the y-direction.

complex transmission and reflection coefficients obtained
using the acoustic 2-Port model and the FEM. The re-
sults are evaluated for three different values of applied
voltages. Good agreement is observed between the two
methods for the range of the studied frequencies. Fig. 6a
shows the Transmission Loss (TL) of a single 1D AMAM
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FIG. 5. The analytic and numerical dispersion plots for the
real components of (a) the effective density, (b) effective bulk
modulus and (c) the effective speed of sound estimated from
(1, 4 and 7) 1D AMAM cells placed in the wave propagation
direction (x-direction), as well as, one 2D AMAM cell while
varying the voltage applied to the plates normal to the y-
direction.

cell under three different applied voltages. The TL is
defined as:

TL = 20log10(
1

S21
) (35)

The trend of the transmission loss in Fig. 6a agrees with
the general trend reported for the measured TL of a circu-
lar elastic plate clamped in a duct [52]. The effective ma-
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FIG. 6. The dispersion plot of the TL estimated from a sam-
ple consisting of (a) only one 1D AMAM cell and (b) four
1D AMAM cells in the propagation direction. The TL is
calculated analytically (Lines) and using the FEM (Markers)
with different voltages applied to the piezoelectric annulus
V = 0, 150, 300V .

terial properties, mainly the effective density, bulk modu-
lus and speed of sound, were calculated from the complex
reflection and transmission coefficients. Their real com-
ponents are shown in Fig. 5. The real component of the
speed of sound (Fig. 5c), which represents the phase ve-
locity of the sound waves inside the AMM, vanishes below
the natural frequency of the composite plate. This indi-
cates the presence of a stop band in this frequency region,
which is similar to what was measured experimentally by
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Lee et al.[2] for a membrane type AMM. They attributed
the presence of the unusual stop band at this frequency
region to the fact that the elastic restoring forces of the
membrane below resonance cause a step reduction in the
acoustic pressure across it. This leads to an exponen-
tial decay of the acoustic waves propagating through the
material. From a material point of view, the effective
density turns negative in this band (Fig. 5a), while the
bulk modulus remains positive (Fig. 5b); as a result, the

speed of sound becomes imaginary, since c =
√

B
ρ .

The effect of the applied voltage on the effective bulk
modulus (Fig. 5b) for frequencies less than 700 Hz
is small compared to its effect on the effective density
(Fig. 5a). This enables us to control the density of the
AMM with minimal effect on the bulk modulus in this re-
gion. This in turn facilitates using transformation acous-
tic techniques in the fabrication of acoustic devices, for
example, the realization of acoustic cloaks. Fig. 5a shows
that with no applied voltage, and for frequencies between
400 − 800Hz, the effective density of the membrane in-
creases from large negative values (about −200 kg

m3 ) pass-
ing by zero density at around 725Hz up to large positive
values (200 kg

m3 ) with the increase of the frequency. By
applying an electric voltage, we are able to shift the res-
onance of the composite plate, and thus the dispersion
curve of the density. The magnitude of the shift is de-
pendent on the magnitude of the applied voltage. If we
consider controlling the effective density for a single fre-
quency, Fig. 7 shows the dependency of the effective
density on the applied voltage at different frequencies. It
is clear that for the frequencies (600, 720Hz), i.e. below
the resonance of the composite plate under zero volt-
age, the relation between the applied voltage and the
density is almost linear up to a voltage of 300V . This
means that a simple controller can be used to adjust the
density of the cell at this frequency range. For higher
frequencies, just below what is called the anti-resonance
frequency of plate, the density of the plate is very sen-
sitive to the applied voltage at low voltages, while it is
less sensitive for higher voltages; nevertheless, it should
be noted that with a suitable value of applied voltage
the effective density at this frequency range can be con-
trolled to vary between large positive and large negative
values. A periodic arrangement of cells can only be con-
sidered as a material, if its effective material properties
are invariant to its length. Thus in order to fulfill this
condition, the effective material properties of different
lengths of the suggested material should be compared to
determine the frequency regions where the effective prop-
erties are invariant to the length. This can be done by
the characterization of a sample consisting of more than
a single cell in the propagation direction using the same
homogenization technique. It should be noted that when
calculating the effective material properties of multiple
cells, the branch number m in equation (7) and (8) plays
an important role in calculating the correct properties.
While for a single-cell sample m can be safely assumed
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FIG. 7. The effect of the applied voltage on the real compo-
nent of the effective density, which is calculated analytically
(Lines) and using the FEM (Markers) for one 1D AMAM cell
at three different frequencies namely 600, 720 and 800Hz.

to be zero (minimum thickness material), for multiple
cells this is usually not the case and a proper method for
selecting the branch number should be used.
The results for a sample consisting of four cells in the
propagation direction is shown in Fig. 6b. Three new
peaks appear in the dispersion plot of the transmission
loss, that weren’t observed in the single-cell sample (Fig.
6a). The calculated effective density, on the other hand,
didn’t show any variation if compared to the single-cell
sample (Fig. 5a). The same observation was made for
samples consisting of more cells than four, with a new
peak appearing for each added cell and the same esti-
mated effective properties (Fig. 5a). This confirms that
the effective density (the material properties) of the stud-
ied cell is invariant to the length for the entire studied
frequency range. This also further supports the claim
that only one cell is sufficient to characterize the mate-
rial using the retrieval method given in [46], given that
the material is symmetric and the long wavelength region
is maintained.

V. APPLICATIONS

The structure of the 2D AMAM enables us to con-
trol its effective density in two different directions inde-
pendently; moreover, the purposed structure can achieve
near zero effective density. AMM with density-near-zero
have been shown to possess extraordinary sound trans-
mission characteristics [38, 57]. Combining the two ad-
vantages enables the developed material to be used in
the fabrication of different acoustic devices which require
controlling and manipulating the spatial propagation of
acoustic waves. This includes reconfigurable waveguides,
reconfigurable acoustic tunnels, tunable acoustic cloaks
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FIG. 8. The developed 2-port network model for the reconfigurable waveguide. The ”Air” blocks indicates quarter cell sections
terminated by the rigid walls of the guide. Incident pressure is applied to the node donated Pin.

and efficient noise control.
As a demonstration for the capabilities of the new de-
signed cell, a simple controllable wave guide has been
constructed. The guide consists of a 69× 46 rectangular
chamber filled with the new 2D AMAM and connected to
three ducts. The ducts have 23×23 square cross sections
and are fitted with anechoic terminations at the other
ends.
Acoustic waves are incident to the guide from the left
duct, and their direction of propagation is manipulated
inside the chamber. By controlling the anisotropic effec-
tive density of each cell, the incident acoustic waves can
be manipulated to exit the guide at any chosen location.
This is done by setting the density of the required path
for the wave inside the guide to near zero density, and
at the same time setting the density of the other cells to
large negative values which prevents the propagation of
acoustic waves through them. The guide was modeled
using the FEM by following a procedure similar to that
mentioned in the ‘Numerical Analysis’ Section. An ana-
lytical model for the waveguide was also constructed us-
ing the network model for the 2D cell. The construction
of the analytic network is shown in Fig. 8. Fig. 9a,9b
shows the wave guide when all cells are set to density
near zero, ρeff = 0.2kg/m3. This was done by apply-
ing 0 V on all the cells for an incident wave of frequency
727 Hz. An efficient wave splitting is observed between
the two output ducts. The configuration of the waveg-
uide is changed in Fig.9c,d so that the wave propagation
is limited to a path in which it is guided to exit from the
upper duct. This was done by setting the density of the
cells that are not on the desired path to −70.15 kg/m3 by
applying 300 V to them and leaving the cells on the path
at near zero density. In the same manner the wave prop-
agation could be controlled to exit from the lower duct.
It is worth mentioning that by increasing the size of the
wave guide, more ports and paths could be added to it.
This would enable the usage of transformation acoustics
techniques to create density fields that would allow for

even more complex manipulations of the propagation of
acoustic waves.

−1 −0.5 0 0.5 1

(a)

(b)

(c)

(d)

FIG. 9. The normalized pressure inside the suggested waveg-
uide for an incident acoustic wave of frequency 727 Hz. The
pressure is estimated using the FEM (a) and (c) and the ana-
lytic network model (b) and (d). The incident excitation and
the propagation direction are marked with white arrows. The
incident wave is controlled to (a),(b) split between the two
ducts and (c),(d) exit from the upper duct only

VI. CONCLUSION

We have introduced and analyzed a novel structure
for active membrane-type acoustic metamaterials based
on composite lead-PZT plates in air. The effective
material properties of the metamaterial are estimated
using the S-parameters retrieval method. An analytic
model based on the acoustic two-port theory, the theory
of piezoelectricity and the pre-stressed laminated plate
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theory has been developed to analyze the material
behavior. A FEM model was constructed to verify the
analytic results using ANSYS.
The analytic results show good agreement with the
FEM for all of the applied control voltages which opens
the door to its use in the design of active acoustic
metamaterials with similar construction, as well as
in the implementation of controllers for the effective
density of the material. The novel design has a frequency
dependent effective density ranging from −200 kg

m3 to

200 kg
m3 within a frequency range of (400− 1600Hz). We

were able to analytically and numerically demonstrate
that the effective density of the material can be con-
trolled by applying a static voltage to the composite
plate. The range of the controllable density lies within
orders of magnitudes of the uncontrolled density while
maintaining a minimum effect on the effective bulk

modulus at frequencies below the resonance of the plate.
This is achievable for the 2D cell where the anisotropic
density could be controlled for two orthogonal directions
independently from each other. The linear nature of the
control characteristics of the material cell suggests that
simple control techniques could be used to program each
AMAM cell to a desired effective density. This facilitates
the construction of devices consisting of large number
of AMAM cells and hence the fabrication of devices
which have full control on the directivity and dispersion
characteristics of acoustic waves. The capabilities of the
new design were demonstrated by the construction of
fully reconfigurable wave guide in which the direction
of propagation of incident acoustic waves could be
arbitrarily programmed and controlled.

[1] H. H. Huang, C. T. Sun, and G. L. Huang. “On the neg-
ative effective mass density in acoustic metamaterials,”
Int. J. Eng. Sci., 47(4):610–617, April 2009.

[2] S. H. Lee, C. M. Park, Y. M. Seo, Z.G. Wang, and C.K.
Kim. “Acoustic metamaterial with negative density,”
Phys. Lett. A, 373(48):4464–4469, December 2009.

[3] N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich,
C. Sun, and X. Zhang. “Ultrasonic metamaterials with
negative modulus,” Nat Mater, 5(6):452–456, June 2006.

[4] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K.
Kim. “Acoustic metamaterial with negative modulus,”
J. Phys.: Condens. Matter, 21(17):175704, April 2009.

[5] J. Li and C. Chan. “Double-negative acoustic metama-
terial,” Phys. Rev. E, 70(5), November 2004.

[6] Y. Cheng, J. Xu, and X. Liu. “One-dimensional struc-
tured ultrasonic metamaterials with simultaneously neg-
ative dynamic density and modulus,” Phys. Rev. B,
77(4):045134, January 2008.

[7] D. Torrent and J. Snchez-Dehesa. “Anisotropic mass den-
sity by two-dimensional acoustic metamaterials,” New J.
Phys., 10(2):023004, February 2008.

[8] D. Torrent and J. Snchez-Dehesa. “Anisotropic Mass
Density by Radially Periodic Fluid Structures,” Phys.
Rev. Lett., 105(17):174301, October 2010.

[9] L. Zigoneanu, B. I. Popa, A. F. Starr, and S. A. Cum-
mer. “Design and measurements of a broadband two-
dimensional acoustic metamaterial with anisotropic ef-
fective mass density,” J. Appl. Phys., 109(5):054906,
March 2011.

[10] J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang. “Exper-
imental demonstration of an acoustic magnifying hyper-
lens,” Nat Mater, 8(12):931–934, December 2009.

[11] S. A. Cummer and D. Schurig. “One path to acoustic
cloaking,” New J. Phys., 9(3):45, March 2007.

[12] S. A. Cummer, B. I. Popa, D. Schurig, D. Smith,
J. Pendry, M. Rahm, and A. Starr. “Scattering The-
ory Derivation of a 3d Acoustic Cloaking Shell,” Phys.
Rev. Lett., 100(2), January 2008.

[13] D. Torrent and J. Snchez-Dehesa. “Acoustic cloaking
in two dimensions: a feasible approach,” New J. Phys.,
10(6):063015, June 2008.

[14] M. Fink. “Acoustic metamaterials: Nearly perfect sound
absorbers,” Nat Mater, 13(9):848–849, August 2014.

[15] D. Torrent and J. Snchez-Dehesa. “Acoustic metama-
terials for new two-dimensional sonic devices,” New J.
Phys., 9(9):323, September 2007.

[16] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T.
Chan, and P. Sheng. “Locally Resonant Sonic Materials,”
Science, 289(5485):1734–1736, September 2000.

[17] C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt.
“Transmission loss and dynamic response of membrane-
type locally resonant acoustic metamaterials,” J. Appl.
Phys., 108(11):114905, December 2010.

[18] C. J. Naify, C. M. Chang, G. McKnight, F.
Scheulen, and S. Nutt. “Membrane-type metamateri-
als: Transmission loss of multi-celled arrays,” J. Appl.
Phys.,109(10):104902, May 2011.

[19] L. Fok and X. Zhang. “Negative acoustic index metama-
terial,” Phys. Rev. B, 83(21):214304, June 2011.

[20] F. Bongard, H. Lissek, and J. Mosig. “Acoustic trans-
mission line metamaterial with negative/zero/positive re-
fractive index,” Phys. Rev. B, 82(9):094306, September
2010.

[21] Y. M. Seo, J. J. Park, S. H. Lee, C. M. Park, C. K Kim,
and S. H. Lee. “Acoustic metamaterial exhibiting four
different sign combinations of density and modulus,” J.
Appl. Phys., 111(2):023504–023504–5, January 2012.

[22] M. Oudich, X. Zhou, and M. Badreddine Assouar. “Gen-
eral analytical approach for sound transmission loss anal-
ysis through a thick metamaterial plate,” J. Appl. Phys.,
116(19):193509, November 2014.

[23] M. Badreddine Assouar, M. Senesi, M. Oudich,
M. Ruzzene, and Z. Hou. “Broadband plate-type acous-
tic metamaterial for low-frequency sound attenuation,”
Appl. Phys. Lett., 101(17):173505, October 2012.

[24] Y. Li, T. Chen, X. Wang, Y. Xi, and Q. Liang. “Enlarge-
ment of locally resonant sonic band gap by using com-
posite plate-type acoustic metamaterial,” Phys. Lett. A,
379(5):412–416, February 2015.

[25] L. Airoldi and M. Ruzzene. “Design of tunable acous-
tic metamaterials through periodic arrays of resonant
shunted piezos,” New J. Phys., 13(11):113010, 2011.



13

[26] Y. Y. Chen, G. L. Huang, and C. T. Sun. “Band
gap control in an active elastic metamaterial with nega-
tive capacitance piezoelectric shunting,” J. Vib. Acoust.,
136(6):061008, 2014.

[27] M. A. Nouh, O. J. Aldraihem, and A. Baz. “Peri-
odic metamaterial plates with smart tunable local res-
onators,” J. Intel. Mat. Sys. Str., 27(13):1829–1845, Au-
gust 2016.

[28] H. Zhang, J. Wen, Y. Xiao, G. Wang, and X. Wen.
“Sound transmission loss of metamaterial thin plates
with periodic subwavelength arrays of shunted piezoelec-
tric patches,” J Sound Vib., 343:104–120, May 2015.

[29] W. Zhou, Y. Wu, and L. Zuo. “Vibration and wave prop-
agation attenuation for metamaterials by periodic piezo-
electric arrays with high-order resonant circuit shunts,”
Smart Mater. Struct., 24(6):065021, June 2015.

[30] F. Casadei, T. Delpero, A. Bergamini, P. Ermanni, and
. Ruzzene. “Piezoelectric resonator arrays for tunable
acoustic waveguides and metamaterials,” J. Appl. Phys.,
112(6):064902, September 2012.

[31] B. J. Kwon, J. Y. Jung, D. Lee, K. C. Park, and
I. K. Oh. “Tunable acoustic waveguide based on vibro-
acoustic metamaterials with shunted piezoelectric unit
cells,” Smart Mater. Struct., 24(10):105018, October
2015.

[32] P. Celli and S. Gonella. “Tunable directivity in metama-
terials with reconfigurable cell symmetry,” Appl. Phys.
Lett., 106(9):091905, March 2015.

[33] A. Baz. “The structure of an active acoustic metama-
terial with tunable effective density,” New J. Phys.,
11(12):123010, December 2009.

[34] W. Akl and A. Baz. “Multicell Active Acoustic Metama-
terial With Programmable Effective Densities,” J. Dyn.
Sys., Meas., Control, 134(6):061001–061001, September
2012.

[35] W. Akl and A. Baz. “Experimental characterization of
active acoustic metamaterial cell with controllable dy-
namic density,” J. Appl. Phys., 112(8):084912, October
2012.

[36] X. Chen, X. Xu, S. Ai, H. Chen, Y. Pei, and X. Zhou.
“Active acoustic metamaterials with tunable effective
mass density by gradient magnetic fields,” Appl. Phys.
Lett., 105(7):071913, August 2014.

[37] S. Xiao, G. Ma, Y. Li, Z. Yang, and P. Sheng. “Ac-
tive control of membrane-type acoustic metamaterial by
electric field,” Appl. Phys. Lett., 106(9):091904, March
2015.

[38] Y. Gu, Y. Cheng, J. Wang, and X. Liu. “Controlling
sound transmission with density-near-zero acoustic mem-
brane network,” J. Appl. Phys., 118(2):024505, July
2015.

[39] M. L. Munjal. Acoustics of Ducts and Mufflers With
Application to Exhaust and Ventilation System Design,
Wiley-Interscience, New York, May 1987, pp. 55-57.

[40] R. Zhu, G. L. Huang, and G. K. Hu. “Effective Dynamic
Properties and Multi-Resonant Design of Acoustic Meta-
materials,” J. Vib. Acoust., 134(3):031006–031006, April
2012.

[41] P. Li, S. Yao, X. Zhou, G. Huang, and G. Hu. “Effective
medium theory of thin-plate acoustic metamaterials,” J.

Acoust. Soc. Am., 135(4):1844–1852, April 2014.
[42] S. Nygrd. Low frequency modelling of complex duct net-

works, Tech, Licent. Thesis, KTH, Marcus Wallenb. Lab.
Sound Vib., 1999.

[43] X. Chen, T. Grzegorczyk, B.I. Wu, J. Pacheco, and
J. Kong. “Robust method to retrieve the constitutive
effective parameters of metamaterials,” Phys. Rev. E,
70(1), July 2004.

[44] D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Souk-
oulis. “Electromagnetic parameter retrieval from inho-
mogeneous metamaterials,” Phys. Rev. E, 71(3), March
2005.

[45] Z. Szabo, G. H. Park, R. Hedge, and E. P. Li. “A
Unique Extraction of Metamaterial Parameters Based on
Kramers-Kronig Relationship,” IEEE T. Microw. The-
ory, 58(10):2646–2653, October 2010.

[46] V. Fokin, M. Ambati, C. Sun, and X. Zhang. “Method for
retrieving effective properties of locally resonant acoustic
metamaterials,” Phys. Rev. B, 76(14):144302, October
2007.

[47] B. I. Popa and S. Cummer. “Design and characterization
of broadband acoustic composite metamaterials,” Phys.
Rev. B, 80(17):174303, November 2009.

[48] B. I. Popa, L. Zigoneanu, and S. Cummer. “Tun-
able active acoustic metamaterials,” Phys. Rev. B,
88(2):024303, July 2013.

[49] N. Cselyuszka, M. Seujski, and V. Crnojevi-Bengin.
“Analysis of Acoustic Metamaterials - Acoustic Scat-
tering Matrix and Extraction of Effective Parameters,”
In Proceedings of Metamaterials, pages 17–22. Metamor-
phose VI, 2012.

[50] V. Lucarini, J. J. Saarinen, K. E. Peiponen, and E. M.
Vartianen. Kramers-Kronig Relations in Optical Materi-
als Research, Number v. 110 in Springer series in optical
sciences. Springer, Berlin ; New York, 2005, pp. 27, 28.

[51] R. Glav and M. Abom. “A general formalism for analyz-
ing acoustic 2-port networks,” J Sound Vib., 202(5):739–
747, 1997.

[52] J. E. Young. “Transmission of Sound through Thin Elas-
tic Plates,” J. Acoust. Soc. Am., 26(4):485–492, July
1954.

[53] J. N. Reddy. Mechanics of Laminated Composite Plates
and Shells: Theory and Analysis, Second Edition. CRC
Press, Boca Raton, June 2004, pp. 356, 357.

[54] M. Abom. “Measurement of the scattering-matrix of
acoustical two-ports,” Mech. Syst. Signal Pr., 5(2):89–
104, March 1991.

[55] ASTM E2611 - 09. Standard Test Method for Measure-
ment of Normal Incidence Sound Transmission of Acous-
tical Materials Based on the Transfer Matrix Method,”
Technical report, ASTM International, 2009.

[56] ANSYS, Inc. ANSYS Mechanical APDL Acoustic Anal-
ysis Guide. ANSYS, Inc., November 2013.

[57] R. Fleury and A. Al. “Extraordinary Sound Transmis-
sion through Density-Near-Zero Ultranarrow Channels,”
Phys. Rev. Lett., 111(5):055501, July 2013.


