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A class of active acoustic metamaterials (AMMs) with a fully controllable effective

density in real-time is introduced, modeled and experimentally verified. The density

of the developed AMM can be programmed to any value ranging from -100 kg/m3

to 100 kg/m3 passing by near zero density conditions. This is achievable for any

frequency between 500 and 1500 Hz. The material consists of clamped piezoelec-

tric diaphragms with air as the background fluid. The dynamics of the diaphragms

are controlled by connecting a closed feedback control loop between the piezoelec-

tric layers of the diaphragm. The density of the material is adjustable through an

outer adaptive feedback loop that is implemented by the real-time evaluation of the

density using the 4-microphone technique. Applications for the new material in-

clude programmable active acoustic filters, non symmetric acoustic transmission and

programmable acoustic superlens.
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I. INTRODUCTION

Acoustic metamaterials (AMMs) have been the focus of a lot of theoretical and experi-

mental work in the past few years. The ability to construct materials with properties that

are not available in nature has opened the way to the fabrication of acoustic devices that

were once thought impossible to achieve. Acoustic superlens1–3, acoustic cloacks4–7, non

reciprocal transmssion8,9, extraordinary sound absorption10–12 and transmission13 are all ex-

amples of once thought impossible devices. Ever since Liu et al.14 have realised the first

AMM in the form of rubber coated lead balls, a lot of different classes of AMMs have been

proposed and analyzed. This includes space coiling AMMs15–17, AMMs based on phononic

crystals18–20 and resonant AMMs21–23.

Elastic membranes and plates have been widely used to design resonant AMMs24.

Membrane- and plate-type AMMs are known for having a simple structure and for being

lightweight. They can normally obtain negative effective mass density at low frequencies21

enabling them to achieve extraordinary sound absorption10,11 and insulation25,26, especially

at low frequencies27,28. They can also achieve near zero effective density, a phenomenon

with many interesting applications regarding the control of sound propagation7,13,29. The

resonant nature of membrane-type AMMs, however, limits their extraordinary properties

to narrow frequency bands. The material has to be carefully manufactured and tuned to

target a particular band.

The material properties of AMMs can be manipulated by embedding active elements in-

side their structure (active AMMs). This manipulation of properties is done by an external

voltage signal and is hardly available in any natural material. This enables the construction

of interesting acoustic reconfigurable and programmable devices9,30. Different types of ac-

tive AMMs have been proposed. This includes using Helmholtz resonators with piezoelectric

diaphragms31, acoustic cavities with piezoelectric diaphragm at both ends32–34, magnetorhe-

ological elastomer membrane35, layered piezoelectric material36–38, decorated membrane con-

trolled by an electric field39, elastic membranes tensioned by direct current electromagnets40

and composite piezoelectric-lead plates41. All these approaches however are limited to tun-

ing the original properties of the material by shifting the dispersion plots. Popa et al.42

suggested a design for a tunable active AMM consisting of a piezoelectric diaphragm and a

unidirectional electret transducer. The signal measured from the transducer is used to drive
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the piezoelectric diaphragm after passing by a reconfigurable electronic circuit, they later

modified this design to include sensing element in the piezoelectric diaphragm9,43. Through

manipulating the electronic circuit, they were able to control the frequency dependent prop-

erties of the cell and use it in the design of a reconfigurable beam steering device and acoustic

lens43. As with the previous designs, although Popa et al. used a feedback circuit to ma-

nipulate the properties of the device, they didn’t show a way to directly set the properties

of their cell to a particular value; moreover, their design is of open loop nature in the sense

that their effective properties can be changed, but they cannot be directly guaranteed in a

closed loop sense.

In the current work, an active one-dimensional (1D) AMM is proposed. Its effective

density can be controlled and programmed to a desired set value. The material unit cell

consists of a circular composite piezoelectric plate clamped in air. The diaphragm consists

of two piezoelectric layers with a brass layer in the middle. The dynamic properties of

the material are manipulated by constructing a feedback loop by measuring the voltage

generated by one of the layers and applying a control signal to the other layer. A vibro-

acoustic analytic model is developed to analyze the behavior of the proposed AMM. A

single cell of the proposed AMM is fabricated and an experimental setup is constructed to

verify the material properties of the AMM. Several designs for the control system of the cell

are proposed and their performance is evaluated. The effective density of the cell is then

controlled using an outer control loop with an adaptive control algorithm that estimates the

density of the material and applies a control voltage to the cell to achieve the desired density

value.

This work is divided into eight sections. In Section II, the structure of the unit cell

of the AMM is introduced. In Section III, an analytic model for the prediction of the

material properties of the introduced AMM is discussed. In Section IV, the stability of

the AMM cell under closed loop operation is discussed. In Section V, a test setup for

the experimental evaluation of the material properties of the suggested AMM is introduced

and the experimental and analytic results are compared. In Section VI, several types of

controllers for the AMM cell are discussed and their performance is evaluated. In Section VII

a closed feedback loop for controlling the density of the AMM cell through an adaptive

control algorithm is introduced.
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Table I. Properties of the materials used in the construction of the AMM cell.

Property Unit PZT-4 Brass Silver

ρ kg/m3 7500 8750 10490

C11 GPa 139 169 125

C12, C23 GPa 78 87 74

C33 GPa 115 169 125

e31 C/m2 −5.2 - -

e33 C/m2 15 - -

ϵ11 1475 - -

ϵ33 1300 - -

II. MATERIAL CONSTRUCTION

The suggested one-dimensional active metamaterial consists of an array of clamped piezo-

electric diaphragms (piezoelectric buzzers) with air as the background material. The ma-

terial is formed by repeating the unit cell shown in Figure 1 along the shown propagation

(x) direction. The unit cell consists of circular piezoelectric diaphragm clamped along the

circumference at a diameter of 38 mm and the unit cell has a total length of 10 mm along

the propagation direction. This corresponds to a homogenization limit around 3400 Hz,

assuming the length of the unit cell (a) is, at least, an order of magnitude less than the

wavelength of incident waves in air. The diaphragm consists of three layers; a brass disk

of thickness 140 µm in the middle with two piezoelectric layers, each of thickness 140 µm,

deposited on each side. The piezoelectric layers are made from PZT-4 material and they

have a diameter of 30 mm. They are covered with silver electrodes of thickness 10 µm from

the external sides. The electrodes cover a circle of diameter 28 mm. The material properties

of the different components of the cell are summarized in Table I, where the subscript 3

denotes to the polarization direction of the piezoelectric layers which is normal to the plane

of the diaphragm and the subscripts 1 and 2 denote to the properties in the plane of the

diaphragm.
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Figure 1. Schematic for the construction of the suggested 1D AMM with one unit cell of the

material highlighted.

III. THEORETICAL FORMULATION

A. Two-port Model

The unit cell is modeled and homogenized using the acoustic two-port theory commonly

used to analyze the propagation of plane sound waves in ducts. The propagation of the

acoustic waves in an acoustic element with two ports a and b can be described by the

transfer matrix T : pa
va

 = T

pb
vb

 (1)

where pa, va, pb, vb are the acoustic pressure and particle velocity at ports a and b. The AMM

unit cell will be considered as a network of acoustic elements consisting of two homogeneous

air layers, with the piezoelectric diaphragm as a third layer in the middle. The transfer
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matrix of the cell Tcell is calculated by multiplying the transfer matrix of each of its layers.

Tcell = TairTdiaTair (2)

where Tair is the transfer matrix of each air layer and Tdia is the transfer matrix of the

diaphragm. Tcell can be used to calculate the scattering matrix of the cell Scell
41. The

scattering matrix has the from:

S =

S11 S12

S21 S22

 (3)

where the elements of the scattering matrix S11 and S22 represent the complex pressure

reflection coefficients for waves incident from both sides. Similarly S12 and S21 represent

the complex pressure transmission coefficients. The S11 and S12 of the cell can be used

to evaluate the effective material properties of the developed AMM. This is done using an

inverse program based on the retrieval method introduced by Fokin et al.44. The results

of this method could be misinterpreted if not examined carefully45–47 and other retrieval

methods exist48,49. While they can produce results which are less prone to misinterpretations,

they are usually limited to analytic formulas and are difficult to be used in practice. Using

Fokin’s retrieval method, the effective impedance Zeff and refractive index neff of the

material can be calculated from44:

neff =
−j ln(ϕ) + 2πm

koa
, Zeff =

ρocoq

1− 2S11 + S2
11 − S2

12

(4)

where ko, ρo, co are respectively the wavenumber, density and speed of sound in air, m is

the branch number, j is the engineering complex number assuming the fields has a time

dependence of ejωt, and:

q = ±
√
(S2

11 − S2
12 − 1)2 − 4S2

12, ϕ =
1− S2

11 + S2
12 + q

2S12

(5)

The effective density and the effective bulk modulus of the AMM (ρeff , Beff ) can be calcu-

lated from Zeff , neff from:

ρeff =
neffZeff

co
, Beff =

Zeffco
neff

(6)

The effective material properties of the cell are controlled by manipulating the dynamics

of the diaphragm through the voltage signals applied to the piezoelectric layers. Since the
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thickness of the diaphragm is very thin compared to the total thickness of the cell, it will

be considered as a lumped acoustic impedance (Zdia) and Tdia is then given by:

Tdia =

1 Zdia

0 1

 (7)

In the following section the active acoustic impedance of the diaphragm is estimated from

the deflection of the diaphragm.

B. Acoustic impedance of the piezoelectric diaphragm

The piezoelectric diaphragm is considered as a laminated plate. The laminae of the

investigated diaphragm are transversely isotropic, have the same orientation, and their dis-

tribution about the mid-plane is symmetric. Also, it is only subjected to axisymmetric loads.

The equations of motion of the diaphragm in the transverse and the in-plane directions are

hence given in polar coordinates by50

(D11∇4 −NP∇2 +mo
∂2

∂t2
)w(r, t) = pi(t) + fP

3 (t) (8)

(A11∇2 − 1

r2
−mo

∂2

∂t2
)u(r, t) = fP

1 (t) (9)

where ∇4 is the bi-harmonic operator, ∇2 is the Laplacian operator, w is the transverse

deflection of the plate, u is the in-plane deflection in the radial direction, r is the radial

position measured from the center of the plate, NF are the in-plane forces, pi(t) is the

acoustic pressure incident on the diaphragm, Aij are the extensional stiffnesses and Dij

are the bending stiffnesses, mo is the mass per unit area of the plate. The terms fP
i are

determined from the resultant forces NP and moments MP induced by the piezoelectric

effect:

fP
1 = ∇2NP , fP

3 = −∇2MP (10)

where NP ,MP are the resultant forces and moments due to the piezoelectric effect:

NP =
N∑
k=1

∫ zk+1

zk

e
(k)
31 E

(k)
3 dz (11)

MP =
N∑
k=1

∫ zk+1

zk

e
(k)
31 E

(k)
3 zdz (12)
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where E (k)
3 is the traverse electric filed applied to layer k. When the electric potential applied

to the piezoelectric layers is uniform across the area, the terms fP
1 and fP

3 are reduced to zero

except at the lateral boundaries of the electrode. Assuming rest initial conditions, Equations

(8) and (9) can be converted to the frequency domain by the aid of Laplace transform. The

transformed equation is given by:

(D11∇4 −NP∇2 + I0S
2)W (S) = Pi(S)

(A11∇2 − 1

r2
− I0S

2)U(S) = 0
(13)

The solutions of Equation (13) have the form:

W (r, S) = E1(S)J0(g1(S)r) + E2(S)Y0(g1(S)r)

+ E3(S)I0(g2(S)r) + E4(S)K0(g2(S)r)

− Pi(S)

D11g4(S)

U(r, S) = E5(S)J1(gp(S)r) + E6(S)Y1(gp(S)r)

(14)

where J0(), I0(), Y0(), K0() are the zeroth order Bessel and modified Bessel functions of

the first and second kind, g is the wave number of the flexural waves traveling through the

diaphragm and is given by:

g4 =
−moS

2

D11

(15)

g1, g2 are given by:

g21 =
−NF +

√
4D2

11g
4 +NF

2D11

(16)

g22 =
−NF −

√
4D2

11g
4 +NF

2D11

(17)

gp is defined as:

g2p =
−moS

2

A11

(18)

E1 . . . E6 are constants to be determined from the boundary conditions of the plate.

From this point forward, the dependency of the variables on S will be omitted for brief-

ness. Assuming the diaphragm consisting of Nc uniform annular sections. Equation (13)

can be solved for each section l and the transverse and in-plane deflections at section l are
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then given by:

Wl(r) = E1lJ0(g1lr) + E2lY0(g1lr)

+ E3lI0(g2lr) + E4lK0(g2lr)−
Pi

D11lgkl
4

Ul(r) = E5lJ1(gplr) + E6lY1(gplr)

(19)

The constants E1l . . . E6l are determined by the boundary conditions of the diaphragm, in

addition to the continuity conditions between each two neighboring sections. The boundary

and continuity conditions are hence given by:

W1(0) = finite, U1(0) = finite

Ml(Rl) = Ml+1(Rl), Ql(Rl) = Ql+1(Rl)

Wl(Rl) = Wl+1(Rl),
∂Wl

∂r

∣∣∣∣
Rl

=
∂Wl+1

∂r

∣∣∣∣
Rl

Ul(Rl) = Ul+1(Rl), Nl(Rl) = Nl+1(Rl)

WNc(RNc) = 0,
∂WNc

∂r

∣∣∣∣
RNc

= 0, UNc(RNc) = 0

(20)

where Ml(r) is the moment at section l, Ql(r) is the shear force at section l, Nl(r) is the

harmonic in-plane force. Equations (20) can be reorganized in matrix form:

ηE = L
Pi

+ L
Pr

(21)

where η is a 6Nc × 6Nc matrix which is only dependent on the diaphragm properties re-

gardless of the excitation, E is a 6Nc × 1 vector of all the unknown constants, L
Pi

and

L
Pr

are 6Nc × 1 load vectors caused by the piezoelectric and the pressure excitations on

the diaphragm. The piezoelectric loads depend on the electric circuits connected to the

piezoelectric layers. The electric charge generated on the piezoelectric layer k in section l is

given in polar form by51:

Q(k)
el

= 2πe
(k)
31

∫ Rl

Rl−1

[
r
∂Ul

∂r
+ Ul(r)

]
dr

+2πϵ
(k)
33

∫ Rl

Rl−1

E (k)
3 rdr

−2πe
(k)
31 z

0(k)

∫ Rl

Rl−1

[
r
∂2Wl

∂r2
+

∂Wl

∂r

]
dr

(22)

where ϵ
(k)
33 is the electric permittivity under constant stress of piezoelectric layer k and z0(k)

is defined by:

z0(k) =
zk+1 + zk

2
(23)
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For the part of the piezoelectric layers that is fully covered with electrodes, E (k)
3 could be

written in terms of the potential difference applied to the layer V
(k)
p :

E (k)
3 =

−V
(k)
p

h(k)
(24)

where h(k) is the thickness of layer k. Rewriting Equation (22) in terms of V
(k)
p and

generated electric current I
(k)
e (S):

I(k)e (S) = SQ(k)
e (S)

= 2πe31S

∫ Rl

Rl−1

[
r
∂Ul

∂r
+ Ul(r)

]
dr − C(k)

p SV (k)
p − 2πe31z

0
kS

∫ Rl

Rl−1

[
r
∂2Wl

∂r2
+

∂Wl

∂r

]
dr

(25)

where C
(k)
p is the electric capacitance of layer k.

Equation (25) can be used to construct the equivalent electric circuit model for piezo-

electric layer k, which is shown in Figure 2 where:

I(k)g (S) = 2πe31S

∫ Rl

Rl−1

[
r
∂Ul

∂r
+ Ul(r, S)

]
dr − 2πe31z

0
kS

∫ Rl

Rl−1

[
r
∂2Wl

∂r2
+

∂Wl

∂r

]
dr (26)

I
(k)
g only depends on the deflections of the diaphragm and not the external circuit, it can be

written in matrix form as:

I(k)g = α(k)E (27)

where α is a 1× 6Nc vector whose elements are evaluated from Equation (26).The value of

V
(k)
p is determined by the nature of the circuit connect to each layer. Considering Thevenin’s

equivalent circuit shown in Figure 2 the value of V
(k)
p could be determined from:

V (k)
p = G(k)

e Z(k)
p I(k)g +G(k)

e V (k)
s (28)

where:

G(k)
e =

1

1 + Z
(k)
p C

(k)
p S

(29)

For the diaphragm shown in Figure 1. The voltage generated by one of the piezoelectric lay-

ers (sensing layer) is measured and fed to a network of reconfigurable electronics (Gc) which

is connected to a voltage amplifier (Ga). The amplifier applies excitation voltage on the

other layer (actuating layer). The presence of the reconfigurable electronics (reconfigurable
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I kg

Vkp

C kp

I kc

I ke
Z kp

−

+
Vks

Figure 2. An electrical circuit model for piezoelectric layer k connected to an arbitrary circuit

represented by its Thevenin’s equivalent

controller) in the loop allows for programming the dynamics of the cell in an arbitrary man-

ner, as long as the stability of the loop is maintained and the maximum allowable excitation

voltage is not reached. Applying Equation (28) on the sensing layer results in:

V s
p = Gs

eR
s
pI

s
g (30)

Where the superscript (s) indicates the sensing piezoelectric layer. Similarly, for the actu-

ating layer:

V a
p = Ga

eR
a
pI

a
g +Ga

eV
a
s (31)

where Ra
p is the output impedance of the piezoelectric amplifier. The applied voltage on the

actuating layer V a
s can be calculated from:

V a
s = GcGaV

s
p = GaGcG

s
eR

s
pI

s
g (32)

Thus:

V a
p = Ga

eR
a
pI

a
g +Ga

eGaGcG
s
eR

s
pI

s
g (33)

Substituting for Iag and Isg using Equation (27) in Equation (33) and combining it with

Equations (11,12,24), the piezoelectric load vector is then:

L
Pi

= ϕ
s
Gs

eR
s
pα

sE + ϕ
a
Ga

eR
a
pα

aE + ϕ
a
GcGaG

a
eG

s
eR

s
pα

sE (34)

where ϕ
s
and ϕ

a
are 6Nc×1 vectors constructed by substituting by Equations (11,12,24) into

Equations (20). They represent the effect of the applied voltage on the two piezoelectric

layers on the boundary conditions of the diaphragm. Substituting by Equation (34) in

Equation (21) and reorganizing, gives:

ηoE = ϕ
a
Ga

eGaGcG
s
eR

s
pα

sE + L
Pr

(35)
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where ηo represents the dynamics of the cell with no control action applied on the actuation

layer.

ηo = η − ϕ
s
Gs

eR
s
pα

sE +Ga
eR

a
pα

aE (36)

The dynamics of the closed loop cell are summarized in the block diagram shown in Figure 3.

The unknown coefficients are then given by:

E =
(
ηo − ϕ

a
Ga

eGaGcG
s
eR

s
pα

s
)−1

L
Pr

(37)

Now that the unknown coefficients are determined, the average displacement of the di-

aphragm W̃ is given by:

W̃ =
1

At

∫
At

W (r)dA (38)

where At is the total area of the diaphragm. The previous equation could be rewritten in

matrix form

W̃ = αpE + γ (39)

Where αp is a 1×6Nc vector of the coefficients resulting from Equation (38) and γ represents

the feed through terms that don’t depend on the boundary conditions. The impedance of

the diaphragm is then given by:

Zdia =
W̃

Pi

(40)

η
o

W(S)Pi

Controller

Gc

+ +αpΦp

αs

Ga

Φa

γ

2 mics 2 micsρo co

Po

Va
Vs

Adaptive 

Controller

ρdesired

Controller parameters

E

GeRp
s

Ge

a

-1

Figure 3. A block diagram representing the dynamics of the closed loop cell with adaptive control
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IV. STABILITY OF THE CELL

The controller transfer function Gc can be chosen to set the effective material properties

of the AAM to arbitrary values. However, this must be done while keeping the cell stable and

avoiding any self-sustained oscillations. This is done by examining the open loop transfer

function of the system GOL. From Figure 3, the open loop transfer function of the cell can

be calculated from:

GOL = GcGaG
a
eG

s
eR

s
pα

sηoϕ
a

(41)

Since the diaphragm is a continuous structure, the estimation of the stability of the system

is not straight forward. The estimated open loop transfer function (GOL) is not rational;

hence, it is difficult to estimate the stability of the cell analytically. It is possible however

to determine the stability margin of the system graphically by examining the Bode plot of

GOL around the frequency region targeted by the controller (Gc). Thus, in order to ensure

the stability of the system, Gc should be chosen to have a decaying response outside the

targeted frequency region.

V. CHARACTERIZATION OF THE AMM CELL

The test setup shown in Figure 4 is used to characterize the effective material properties

of the cell using the two source method52. The setup has an inner tube diameter of 25 mm.

Three PCB model 378C10 1
4
” IEPE microphones are flush mounted to each tube. Two

SEAS W18EX001 100W speakers powered by a Yamaha P3500S audio amplifier are used

to provide upstream and downstream acoustic excitation. The signals of the microphones

are connected to the channels of a NI PXI-4472 eight channel input module mounted on

a NI PXI-1042Q data acquisition system. The sensitivity of each microphone is calibrated

using a B&K 4231 sound calibrator. The relative phase between them is calibrated using a

phase calibrator. The control circuit of the cell is constructed by connecting the signal of

the sensing PZT layer to an input channel of an NI PXI-7854R multifunction reconfigurable

I/O. The output channel of the NI PXI-7854R is connected to a Piezodrive MX200 200V

1A Piezo Driver, which supplies the voltage signal to the actuating PZT layer.

A single AMM cell is constructed by clamping a AB4113B commercial bender (piezoelec-

tric diaphragm) using the mechanical clamp shown in Figure 4. The diameter of the designed
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(a)

(b)

s d d s

Mic 1 Mic 2 Mic 3 Mic 4

Upstream impedence tube Downstream

Semi

anechoic

termination

Data acquisition system

(PXI)

Sensing Circuit

Piezoelectric

Power Amplifier

Power

Amplifier

AMM

Cell

Power

Amplifier
a

Semi

anechoic

termination

Reconfigurable

I/O

15

3
8

2
5

15

6 bolts for clamping the diaphragmHoles for conecting the wires

Piezoelectric diaphragm
Input moduleOutput module Output module

Speakers

Piezoelectric amplifier

DAQ

Microphones

Speakers amplifier

AMM cell

Figure 4. (a) Schematic for the test setup connections and the construction of the AMM cell (b)

Photo of the actual test setup.
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cell (38 mm) is different from that of the impedance tubes (25 mm) so the clamp was de-

signed with a cone adaptor to connect the cell to the upstream and downstream impedance

tubes. The effective material properties of the cell are determined by exciting the cell with

band limited white-noise excitations up to 2000 Hz. For each measurement 100 readings are

recorded and averaged to reduce the measurement noise. With the controller gain set to

zero, open loop cell, the effective density is estimated experimentally and compared to the

analytic results obtained from the developed model (Figure 5). An excellent agreement is

observed between the predicted and measured values over the studied frequency range, even

though a commercial diaphragm is used and that no special manufacturing techniques were

used to ensure its properties. Figure 5 shows that the value of the real component density

approaches zero near the first resonance frequency, around 1100 Hz. It changes from large

negative values for frequencies below the resonance to large positive values for a certain

frequency range above the first resonance. The Transmission Loss (TL) of the cell is shown

in Figure 5(c,f). The TL of the cell is defined by:

TL = 20 log10

(
1

S12

)
(42)

The TL of the material is minimum near the resonance frequency of the diaphragm, which

is expected since the deflection amplitude of the diaphragm should be maximum near its

resonance. Similar distributions for the density and TL was repeatedly observed for previous

membrane-type AMMs with different configurations39,53,54.

VI. CONTROLLER TRANSFER FUNCTION

The relation between the effective density and the frequency suggests that shifting the

first resonance to lower or higher frequencies would allow for controlling the effective density

within a limited frequency range near the resonance of the cell. This shift could be done

using a lead-lag controller with the following transfer function:

Gc =
Kc(S + z1)

(S + p1)(S + p2)
(43)

The value of the gain Kc controls the amount of the shift and its sign controls its direction,

where the locations of the poles (p1, p2) and the zero (z1) are chosen to maximize the allow-

able frequency shift before the system becomes unstable. This controller approach however
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Figure 5. The real and imaginary components of the effective density, as well as, the TL of the

developed AMM characterized analytically and experimentally. The results obtained without any

control applied to the cell are compared to those obtained (a,b,c) using controller 1 (Equation (43))

with Kc = −1000 and Kc = 2500 and (d,e,f) using controller 2 (Equation (44)) with fc = 700 Hz

and Kc = 4× 106 and controller 3 (Equation (45)) with fc = 1300 Hz and Kc = −120.
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limits the controllable frequency range to a small region around the open loop resonance of

the diaphragm. The effect of applying this controller to the cell is shown in Figure 5(a,b,c).

The parameters of the controller were set to z1 = 1000, p1 = p2 = −4500 and K set to 2500

for negative shift and −1000 for positive shift of the resonance. Good agreement between

the predicted and measured effective density was observed for both negative and positive

frequency shift controller configurations.

An alternative approach would be to set the transfer function of the controller so that it

adds an additional resonance frequency to the closed loop transfer function. This induces a

similar behavior to what happens near the open loop resonance at the selected additional

frequency. For frequencies below the open loop resonance, this could be done by setting the

transfer function of the controller Gc to:

Gc =
Kc

S2 + 2ζcωcS + ω2
c

(44)

where ωc = 2πfc and fc is calculated from the target resonant frequency of the controller in

Hz, ζc is damping ratio of the controller and Kc is the controller gain. In order to control the

density of the cell around a certain target frequency, ωc of the controller could be initially set

to match this frequency. By shifting ωc to higher or lower values, the effective density could

be fully controlled within the reachable limits of the controller. These limits are bounded

by the values of Kc and ζc which maintain the system’s stability. If the target frequency is

above the open loop resonance, the transfer function could be set to:

Gc =
Kc(S − z1)

S2 + 2ζcωcS + ω2
c

(45)

where (z1) is an additional zero, used to tune the phase of the open loop transfer function

of the system to ensure its stability. Figure 5(d,e,f) shows the effect of setting the controller

transfer function to the resonant controllers (Equation (44) with ζc = 0.04, Kc = 4×106 and

fc = 700 Hz and Equation (45) ζc = 0.04, Kc = −120 and fc = 1300 Hz) on the effective

density of the cell. The analytic model succeeds in the estimation of the general behavior of

the properties cell under the effect of the two controllers. The resonant controllers achieve

their target objective by adding an additional zero-crossing frequency (additional resonance)

near the frequency which they are targeting. The value of the imaginary component of the

density shown in Figure 5(b,d) is negative for the studied frequency range in the uncontrolled

case. This condition must be present to ensure that the used homogenization technique did
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not violate any passivity conditions found in the material. For the controlled cases the

imaginary component of the density is positive at certain frequency ranges, which indicates

that the material is no longer passive at these regions (gain medium) and that the energy

supplied to the system by the control action is greater than the losses inside the material.

VII. ADAPTIVE CONTROL OF THE CELL DENSITY

The ability to measure the density of the cell in real-time allows for adapting the param-

eters of the controller transfer function to achieve a desired density at a specific frequency.

This first requires the density of the cell to be estimated in real-time. A density estimator

is developed based on the same two-source method52 used in the measurements. Two mi-

crophones at each side of the cell are used to decompose the acoustic waves passing through

the cell and estimate its real-time reflection and transmission coefficients. The two source

method however requires the cell to be excited at least once from each side to evaluate the

4 elements of the scattering matrix. To overcome this limitation, the fact that the cell is

symmetrical in the propagation direction will be used to reduce the number of excitations

to one. This means that the elements of the scattering matrix could be evaluated in the

presence of incident acoustic waves from any direction. The signals acquired from the mi-

crophones are sampled with a constant sampling time (Ts) until a predetermined number of

samples, time window (Tw), are acquired. The window is then converted to the frequency

domain, and the transfer functions between the microphones are determined and converted

to the reflection and transmission coefficients of the cell55. These coefficients are then fed

to an inverse program which is based on the retrieval method developed by Fokin et al.44 to

estimate the real-time effective density of the cell. An adaptive control algorithm is designed

to use the frequency content of the incident waves to determine the dominant frequency of

the acoustic waves passing through the cell. It then uses the density estimator to determine

the effective density of the cell. Knowing the error between the desired effective density and

the required density, it uses a traditional PID controller to adjust the parameters of the

feedback controller (Gc). A discrete PID controller is used to tune the parameters of the

feedback controller. The resonant controller frequency ωc is determined from the following

relation:

ωc = ωco +∆ωc (46)
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Where ωco is the detected frequency of the incident excitation and ∆ωc is the output of the

PID controller.

∆ωc = Kp +
KiTwz

z − 1
+

KdN(z − 1)

(1 +NTw)z − 1
(47)

Where Kp, Ki and Kd are the proportional, integral and differential gains of the controller, z

is the z-transform variable andN is the cutoff frequency of the low pass filter of the derivative

term. The gains of the PID controller, as well as the gain of the resonant controller (Kc),

are determined based on the incident frequency (ωco) from a set of tuned values which are

determined offline for each frequency range separately. The damping of the controller (ζc)

is kept constant for all controllers.

In order to realize the adaptive controller, the signals of the microphones used in the

measurement process are branched and connected to a second NI PXI-4472 eight channel

input module mounted on the data acquisition system. The readings from the first input

module are used in the measurement process, while those of the second input module are

used in the control process. This was done on the hardware level to ensure the complete

separation between the two processes.

The adaptive control algorithm is implemented as a standalone C program using the NI

Labwindows/CVI libraries to interface with the microphones’ signal from the input module

and to set the parameters of the controller. The flow of the adaptive control algorithm is

summarized in Figure 6. In order to test the performance of the adaptive controller the

cell is excited using upstream and downstream stepped sine excitations between 500 Hz and

1500 Hz. Each single frequency excitation is applied on the cell for 10 seconds, so that

the response of the controller completely settles before recording the measurement data.

The effect of applying the adaptive control algorithm on the effective density of the AMM

cell is shown in Figure 7(a,b). It shows that the controller is able to achieve any desired

density value between −100 kg/m3and 100 kg/m3 including near zero density conditions.

This is achievable for any single frequency between 500 Hz and 1500 Hz. For most of the

studied frequency range, the controller was able to change the dynamics of the AMM cell

to a value within 10% of the desired density set-point regardless of the open loop density

value at the targeted frequency. An exception to this are frequencies near 1500 Hz, for

a set value of 100 kg/m3, the error reaches about 30%. This error appeared because the

control effort is not able to drive the AMM cell to the desired set point at this frequency.

Thus, the frequencies around 1500 Hz represent the boundary of the controllable region of
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Figure 6. Flowchart for the procedure of the adaption of the cell density based on the incident

excitation.

the adaptive controller. The effect of the controller on the bulk modulus of the AMM is

shown in Figure 7(c,d). While the controller was able to vary the density between large

negative and positive values, the real component of the bulk modulus remained almost

constant around that of air Bo ≈ 105 N/m2. This is expected, since membrane-type and

plate-type metamaterials are mainly known for unusual effective density24. This is also

desirable. The control effort only affects the effective density of the AMM and has minimal

side effects on the real component of the effective bulk modulus. An AMM material with

fully controllable material properties could be constructed by implementing a hybrid design,
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which incorporates another active element to control the bulk modulus. The TL of the

closed loop cell under the effect of the controller is shown in Figure 7(e). The TL of the

cell was minimal when setting ρ = 0 kg/m3, while it was generally higher when setting

ρ = −100 kg/m3. This further verifies the validity of the homogenization technique used,

since ρ = −100 kg/m3 should correspond to a stop band in the material while ρ = 0 kg/m3

indicates a transmission with zero phase and minimal impedance mismatch with the air. The

achieved performance of the AMM cell opens the door to a set of possible applications for

the developed material. Asymmetric transmission of acoustic waves could be easily achieved

for single tone excitations. Given that the excitation is of a single sided nature, the material

could be programmed to detect the propagation direction of the incident waves and adjust

its density accordingly. The material could be programmed to work as an active acoustic

filter with arbitrary stop (negative density) and pass (near zero density) bands within the

material’s controllable frequency range. The material could be also programmed to achieve

any desired density gradient, given that a sufficient number of cells is used.

VIII. CONCLUSION

A design for a one-dimensional active acoustic plate-type metamaterial is introduced.

The material consists of clamped composite piezoelectric diaphragms suspended in air. The

effective density of the material is manipulated by adjusting the dynamic properties of the

diaphragms through a closed loop feedback controller. An analytic model based on the

acoustic two-port theory and the composite laminated plate theory is developed to predict

the behavior of the AMM. Three different types of controllers for manipulating the material

properties of the cell are introduced. An experimental test setup for the evaluation of

the material properties of the AMM is constructed to verify the analytic results. Good

agreement is observed between the measured and predicted values for the open loop cell.

The proposed resonant feedback controllers are verified to add an additional predetermined

resonance frequency to the cell and thus add a new zero-crossing point for the effective

density of the material. An adaptive control algorithm is developed to achieve a closed loop

control over the density of the AMM. The algorithm estimates the density of the AMM in

real-time and adjusts the feedback control transfer function to reach a predetermined value

for density of the material at the frequency corresponding to maximum incident acoustic
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Figure 7. The adaptive controller is tested under three different set points for the density which

are ρdesired = −100 kg
m3 , ρdesired = 0 kg

m3 and ρdesired = 100 kg
m3 . The effect of the controller on

the (a) real and (b) imaginary components of the effective density, the (c) real and (d) imaginary

components of the bulk modulus and (d) the TL of the closed loop AMM cell are demonstrated.

The measured open loop parameters are also plotted as a reference.
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pressure amplitude. The adaptive controller was proven experimentally to set the density

of the cell to values ranging from −100 kg/m3 up to 100 kg/m3 for acoustic waves with

frequency between 500 and 1500 Hz. Potential applications for the developed material

include controllable asymmetric sound transmission, programmable active filters and in the

manufacturing of a programmable acoustic superlens.
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