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Aspect ratio-dependent dynamics of piezoelectric
transducers 1n wireless acoustic power transfer

Ahmed Allam, Karim Sabra, and Alper Erturk

Abstract—Acoustic power transfer (APT) for wireless elec-
tronic components has received growing attention as a viable
approach to deliver power to remotely located small electronic
devices. The design of an efficient APT system requires accurate
models to describe its individual components as well as the
interaction between them. Most of the analytical models available
to represent the bulk piezoelectric transducers used in APT are
limited to either thin rod or thin plate transducers. However,
transducers with moderate aspect ratios are often used especially
at the receiver end. In this work, in addition to reviewing
standard theories, models based on the Rayleigh and Bishop
rod theories are developed to analyze transducers (transmitter
or receiver) with various aspect ratios. Results from these models
are compared with experimental data and finite-element analysis
to determine the range of aspect ratios in which they are valid. In
addition, fluid loading effects on the predictions of all models are
investigated, and the generated pressure fields by the transducers
with different aspect ratios are compared. The resulting models
are used to analyze the effect of aspect ratio on the performance
of the transducer when operated as a transmitter or a receiver
in an APT setting.

Index Terms—Wireless power transfer, piezoelectric, acoustics,
transducers.

I. INTRODUCTION

IRELESS electronic devices in the form of embedded

sensing, communication, and actuation modules are
used in a wide range of engineering applications. These
devices usually require minimal power to operate, but they are
often placed in remote, hazardous, or inaccessible locations.
Their presence in such locations prevents powering via wires
and require other practical means for power delivery. When
sufficient usable energy is present in the ambient environment,
it could be collected and converted to electrical energy using
energy harvesting devices [1]-[6]. However, if the ambient
energy is limited, external energy can be supplied to these
electronic devices using a wireless power transfer system.
Such a system consists of a transmitter (TX) connected to
an electric power source/circuit, and a receiver (RX) which
is integrated into the electronic device to be powered. TX
converts the source electric power into another form of power
(e.g. electromagnetic or acoustic) which can travel through the
medium. RX then captures this power and converts it back to
usable electric power usually through a signal conditioning
circuit. The nature of the medium through which power is
transferred, the electric load characteristics, and the separating
distance between TX and RX are among the main factors
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to be considered when selecting how the power will be
transmitted, and hence the type of the transducers used as
TX and RX. When the separating distance is small and the
medium is air, electromagnetic transduction in the form of
magnetic coupling is a popular approach to transfer energy
between TX and RX [7]-[9]; however, the energy transfer
efficiency of magnetically coupled transducers is reduced dras-
tically with increased separation distance compared to TX and
RX dimensions [10]. Moreover, certain applications impose
limitations on the maximum amplitude of the electromagnetic
waves used for power transfer which then limits the use of
this transduction mechanism [11]. On the other hand, Acoustic
Power Transfer (APT) has found applications in powering bio-
medical implants [12], transmitting energy through metallic
walls [13]-[15], and powering wireless sensors along indus-
trial pipelines [16], [17] among others.

In a typical APT system (Figure 1), piezoelectric transducers
are the most popular choice to convert electric power into
acoustic waves and then back to electric power at the receiving
end. The height (or thickness) of the transducer (h) dominantly
controls its operating frequency range at which maximum
acoustic-to-electric power conversion (or vice versa) takes
place. A low resonance frequency is preferred for reduced
attenuation of propagating wave energy, however, this re-
quires a thicker transducer. Piezoelectric transducers operating
around 1 MHz are usually a few millimeters thick, while
those operating around 100kHz could be as thick as a few
centimeters for efficient operation. Transducers that generate a
focused ultrasonic beam in an open medium generally need to
have a large radius (a) relative to their thickness making plate-
like transducers a popular choice for ultrasonic TX design.
The relationship between the transducer thickness, radius,
operating frequency, and directionality requires a careful in-
vestigation of the effect of transducer’s aspect ratio on its
performance, as well as its ability to function as a transmitter
or a receiver in wireless power transfer.

Several analytical techniques exist in the literature to model
piezoelectric transducers. Perhaps the most common of them
are Krimholtz, Leedom and Matthae (KLM) and Mason [18]
type of equivalent circuit models. These equivalent circuit
models are convenient and easily simulated using available
circuit analysis tools [19]; however, their accuracy and applica-
bility depend on the dimensions of the transducer, specifically
its aspect ratio (8 = h/a), unless the model parameters are
identified from experiments. When derived from first princi-
ples (rather than being identified from experiments), KLM and
Mason models are best suited for extreme aspect ratios: the
thickness expander plate (thin infinite plate assumption) which
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Fig. 1. Schematic of a typical wireless APT system.

can be only used for very small 3, or the length expander bar
which can be only used for very large 3. These assumptions
are difficult to satisfy when there are size limitations on the
dimensions of the receiver, as for many of the suggested APT
systems, size and frequency constraints lead to transducers
with moderate aspect ratios [20]-[23]. Analytical models
based on the continuum dynamics of the transducers have also
been investigated [24]-[27]. While these models offer insights
into the factors affecting the power conversion capabilities of
the transducers, their applicability is limited to transducers
with extreme aspect ratios. To overcome these limitations
experimentally, the parameters of both the equivalent circuit
and analytical models are usually fit to the response of the
actual transducers when they cannot be accurately modeled as
a thin bar or a thin plate. This limits the usefulness of such
models when the actual response of the transducer is critical to
the performance of the APT system, and prevents optimizing
the system in the design phase.

Recently, we explored several continuum analytical models
to approximate the response of a thickness-mode piezoelectric
transducer, where each model is applicable within a specific
range of aspect ratios [28]. The validity range of these models
were investigated by comparing their numerical predictions
to the values obtained using finite element method (FEM)
simulations as well as experimental measurements of the
impedance of thickness-mode PZT transducers. In this work,
the introduced models are derived from basic principles, and
the equations of the derived models are put in S-parameters
(i.e. scattering parameters) matrix form, which can be easily
imported to the abundantly available circuit simulators. This
facilitates integrating their design with the other electrical
components involved in the APT system. The analytical and
numerical methods are then used to analyze the effect of aspect
ratio on the generated pressure field from the transducers when
used as TX and the generated electrical power when used as
RX.

In the following, dynamics of thickness-mode piezoelectric
transducers are studied analytically, and transducer models
based on the thin rod, Rayleigh (also known as Rayleigh-
Love), Bishop (also known as Rayleigh-Bishop) and thin plate
assumptions are derived using energy approaches in Section II.
The impedance of each transducer is measured experimentally
and compared to the analytical predictions and to numerical
simulations in Section III. The effect of transducer’s aspect
ratio on its performance is analyzed when used as a transmitter

in Section IV and as a receiver in Section V. A summary of
the findings of the work and concluding remarks are presented
in Section VI

II. THICKNESS-MODE DYNAMICS OF A PIEZOELECTRIC
TRANSDUCER WITH CIRCULAR CROSS SECTION

A continuum of piezoelectric material is governed by the
piezoelectric constitutive equations, which are given in their
stress-charge form by:

=CFs—e'E (1)
D=eS+¢€’E )

where T" and S are the mechanical stress and strain vectors, £
and D are the electric field and electric displacement vectors
respectively, CF is the stiffness matrix at constant electric
field, €° is the electric permittivity matrix at constant strain and
e is the piezoelectric coupling matrix. Structural (mechanical)
and dielectric losses are considered in the form of complex
elastic and dielectric constants:

S
CF = Clﬁdamped (1 =

- ’Yi) » € 6{Jgndamped(1 - 62)

where v and ¢ are the structural and dielectric loss factors. A

(a)
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Fig. 2. (a) Schematic of a piezoelectric rod transducer, (b) three-port element
representation, and (c) incident and reflected voltage and pressure waves on
the transducer.

cylindrical piezoelectric transducer with height h and radius
a is considered (Figure 2a). The transducer is poled in the
longitudinal (2) direction, and thin metallic electrodes are
deposited on its circular faces. The lateral components of the
electric field and the electric displacement vanish; therefore,
(1) and (2) can be simplified to:

T1 = C1151 + C1252 + C1353 — e31 B3 3)
Ty = C1251 4+ Ca252 + C1353 — e31 E3 €]
T3 = C1351 + C1352 + C3353 — e33 3 @)
Ty = CyaS4 6)
T5 = CysSs @)
T6 _ Cll 5012 S6 (8)
D3 = e3151 + 3152 + e3353 + e33E3. &)
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where the index 3 indicates the polarization direction, and (1,2)
indicate the directions normal to the polarization vectors. In-
dices (4-6) follow Voigt notation to represent shear stresses and
strains. In the cylindrical coordinates (r, 6, z), the mechanical
strain is related to the displacement field by [29]:

du, 1 (dug _ du,
Sl_dra 2_(d9+ur)7 Sd_dzu

Ldu, dug _ du, | du,
Si=Twmt e STt

1 /du, dug

where w,,ug and u, are the displacements in r, 6 and z
directions respectively. The modified Hamilton’s principle for
a piezoelectric volume is given by [30], [31]:

ta
/ (T —U+We+Wye)dt =0 (11)

ty
where T is the total kinetic energy of the rod, U is the total
potential (elastic) energy of the rod, W, is the electric energy
stored in the rod, and W, is the work due to the non-
conservative forces acting on the rod including the external
mechanical and electrical forces given by:

RV PTRIY SR
_ 1/ zﬁjnsidv (13)

2 Vic
W, — % /V E3DydV (14)
Whe = /S (Erur + toug + tou. — o) dA (15)

where p is the mass density, V is the volume, S is the external
surface of the transducer, ¢ is the external traction acting on
the surface of the transducer, g is the external surface charge
density, and ¢ is the electric voltage applied to the surface.

The response of the transducer cannot be estimated ana-
Iytically unless certain assumptions are made regarding the
displacement fields inside it. These assumptions can be made
when the aspect ratio (8 = %) of the transducer is very
high (thin rod, Rayleigh, and Bishop theories) or very low
(thickness vibration of an infinite plate).

A. Classical thin rod model

For a symmetric thin rod, the lateral stresses and shear
stresses are assumed to be very small i.e:

T'=T,=T,=T5=T5 =0 (16)

The longitudinal displacement wu, is assumed to have the form:
u. = u(z,t) a7
and the electric potential ¢(z,t) is related to the electric field
Es5 by:
09

E:
3 0z’

(18)

Substituting (16-18) into (10) and (3-9) yields:

T3 = Ca3u™) (2,t) + €301 [2,1]
2013 (C13U(1’0) (Z7 t) + 631¢(1’0) (Z, t))

19
Ci1 + Ch2 (19

Dy = ez3u™ (2,) — 33610 (2,1)
_ 2631 (Cl3u(1’o) (Z, t) + 631¢(1’0) (Z, t)) (20)

C11 + Cr2

where the superscript (m,n) indicates the m™ derivative with
respect to z and the n™ derivative with respect to ¢. Substitut-
ing (16-20) in (12-15) and neglecting the lateral inertia terms
(4, = g = 0) yield the formula for the conservative energies
inside the rod in terms of the longitudinal displacement u(z, t)
and electric potential ¢(z, t):

T= %/Vp <u(0’1) (z,t)2) dv

1 202, )
U= f/ ( (C, -3 ) w0 (2t
2 Jy B0+ O (1)

o 368 (1,0) t (1,0) ) |dV
+ (e = 2289 400 (o)l (e )

(22)
1 2¢2
WE I o em31
2 /7 ( (633 * Ci1 +Cr2

_ _ 2Csesn \ 0 (1,0)
((333 Cu+ C12) (1) ¢ (2,1) Jav
(23)

2n

¢(10 Zt

For the rod shown in Figure 2a, the non-conservative work is
given by:

Woe =Pr () u(0,t) + Py (t) u (h,t) — Q (t) b (h,t) (24)

where Q(t) is the total electric charge flowing into or from
the transducer’s domain. Substituting (21-23) back into (11),
taking the variation of the integral with respect to u(z,t)
and ¢(z,t) and performing integration by parts yields the
electromechanical governing equations:

pu(0?) (z,t) — Cu>9) (z,t) + g0 (2,t) =0 (25)
eu®0 (z,t) — e (2,t) =0 (26)
and the boundary conditions:
Ay (Cul' (z,0) +2600) (2,6)) + Pra(®) =0|
z2=0,
2
du(z,t) =0[,_gp, (28)
Ay (2ult) (2,1) — 619 (1)) = Q (1) = 0 (29)
z=0,
56 (2,) = 0] _q. (30)
where
202 2013631
C=0C3——1B__ &= _—
2 Ci1+ Ch2 €T Ciu +Cr2
€ = €33 26%1 3D
Ciu + Cr2
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and A, is the cross-sectional area of the transducer. (27)
and (28) are the mechanical natural and essential boundary
conditions, while (29) and (30) are the electrical natural and
essential boundary conditions, respectively. The solution of
(26) is obtained by integration:

o (z,t) = gu(z,t) +c1z+ca (32)

The value of ¢; could be expressed by substituting (32) in the
electrical natural boundary condition (29)

QW
YT Ae
The value of co is arbitrary since it represents the absolute

electric potential. The potential difference between the elec-
trodes is given by:

V() = o(h,t) = $(0,1)

h e
_ TIEQ () + = (u(h,t) —u(0,t))

(33)

(34)

Substituting (26) in the first equation of motion, (25), yields
the mechanical wave equation:

pu®?) (z,t) — TPy (2,t) =0 (35)

—D = g . .
where ¢ = C' + < is the reduced stiffness of the bar at
constant charge (open-circuit conditions). Assuming harmonic
plane-wave solution of the form

u(z,t) = Ayel@t=h) | B eilwttkz) (36)

where k£ = % is the wavenumber, w is the angular frequency of
the wave, ¢ = \/E is the speed of sound in the transducer,
and A,, B, are the complex amplitudes of the forward and
backward traveling displacement waves. The value of A, and
B,, can be evaluated from the mechanical boundary conditions
given by (27) or (28).

A more general approach, however, for the estimation of the
response of the transducer is to consider it as a 3-port element
and focus on relating the inputs and outputs of these elements
in a generic sense. In this approach, the interface matching
conditions given by (27), (28) and the electrical boundary
conditions (34) can be used to express a scattering matrix
which relates incident and reflected waves at each port (both
electrical and mechanical waves). The transducer scattering
matrix S is given by:

B, Ay S Sz Siz| |4
By| =8 [Ay| = [S21 Sa2 Saz| |A2 37
B, A, S31 Sz Szz| [A

where A;, By, Ay, By are the incident and reflected pressure
waves on faces 1 and 2, while A,, B, are the incident
and reflected voltage waves on the electrodes as shown in
Figure 2c.

To evaluate the scattering matrix, the total pressure on
both faces P;(t) and P,(t) as well as the voltage across
the electrodes V'(t) are written in the form of incident and
reflected waves, as shown in Figure 2c, in the form:

P (th) _ Alei(wtfkmzl) + Blei(thrkmzl) (38)

Py (227 t) _ Azei(wt—ksz) + B2ei(wt+km22) (39)

V(t) = (A, + B,) e (40)

and the acoustic velocities (vy (z1,t)), and electric current
flowing into the transducer are then given by:

v (217t) _ (Alei(wt—kmm) _ Blei(wt-i-kmm)) (41)
m
1 . .
vz (22,1) = — (Aze“wt*’“m@) - BQBZW”km@)) 42)
A, — B,
I(t)= 7 et 43)

where k,,, = ﬁ is the wavenumber of the external medium,
Zm = PpmCm 1S the acoustic impedance of the external
medium, p,, and c,, are the mass density and speed of sound
in the surrounding medium (surrounding fluid) and Z. is an
arbitrary reference electric impedance. Applying continuity
equations to both the mechanical and electrical interfaces:

u®D(0,8) = 01 (0,8), wOV (A1) = v (0,1)  (44)
_dQ
I(t)=—~ (45)

and substituting (38-40) in (27, 34, 44) yields:

ApZ.ew (A + By) e"* i (A, — B,) e"re+
iApZeheo (Ay = Bue*™) (&2 +C7¢) =0

(A, — By) e+ —iA,Z.we (A1 + By)
+ ApZekw (A, — By) (62 +€DE> =0

F(Au+ Bu) = (A (-1 4+ ™) 4 B(-1+c™))e
i(Av—Bu)h
ApZew

iwAy Zm (Ay + By) = Ay — By

iwApZme™ " (A, + Bue®™) = —Ay + By (46)

(46) is then arranged into matrix form:

M1 [Bl BQ Bv Au Bu]T

=M;[A Ay A

47
where M; and M5 are (5x5) and (5x3) system matrices. The
scattering matrix is then given by:

S = M3;M; 'M, (48)
where
100 00
Ms=1[0 1 0 0 0 (49)
00100



IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS AND FREQUENCY CONTROL 5

B. Rayleigh model

The thin rod assumption neglects the lateral inertia of the
rod which limits its applicability to rods with very large /3 val-
ues (i.e. very slender rods). The Rayleigh rod theory includes
the effect of lateral inertia by assuming the displacement fields
for an axisymmetric thin rod to have the form [29]:

u, =u(z,t), u,= —I/ru(l’o)(z,t), ug =0 (50)

where v = C13/(C11 + Ci2) is Poisson’s ratio. This model
can be used for transducers with lower aspect ratios up to the
limit where radial and shear deformations start affecting the
response of the transducer.

As for the thin-rod case, the electric potential is assumed
to have the form ¢(z,t). (50) can then be used alongside (32)
to express the strain fields inside the rod by substituting them
in (10), which in turn can be used to express the stresses and
electric displacements through (3-9). Substituting everything
into the energy equations (12-15), neglecting the shear stresses
(T4 and T5), taking the variation of the integral with respect to
u(z,t) and ¢(z,t), and performing integration by parts yields
the electromechanical governing equations:

Appu®? (2,1) = A,Cu®? (2,1) + Aep®? (2,1)
+ L2 pu®? (z,t)  (51)

eu®9 (z,1) — 3303 (2,8) =0 (52)

and the boundary conditions:
— A, Cut (z,t) — Ayept O (z,t) — L2 pu™? (2, 1)
+ Pio(t) = 0|Z:07h (53)

ou(z,t) =0[,_q (54)

A, (éu(l’o) (z,t) — egzpH0 (z,t)) —Q () =0],=0,1

5¢ (th) = O|z:0,h

where I, is the polar moment of inertia of the rod. The
electrical equation of motion (52) has the same form as the
thin-rod case (26), and thus its solution is also given by (34)
except for replacing the modified electric permittivity (€) with
(e33). Substituting back in (51) yields:

(55)

Appu©?) (z,t) = ApéDu(z,o) (2,8) + L2 pu®? (2,1)

(56)
The solution of (56) can be written in the form:
u(z,t) = (Aue_ikz + Bueikz) et (57)
where k is given by:
(58)

A
k=w —5 il
A,C — L% pw?
As with the thin rod case, the electrical and mechanical

interface matching conditions can be used to construct the
scattering matrix using (48).

C. Bishop model

The Bishop rod theory accounts for the coupling between
longitudinal and radial displacements inside the rod through
the shear elastic modulus C4. Following the same energy
approach yields slightly more involved governing equations

Appu®? (2,1) + Caa L, u™0 (2,1) =
A,Cu®0 (2,1) + Aped >0 (z,1) + L?pu®? (2,t)  (59)

eu0 (z2,1) — 33029 (2,1) = 0 (60)
and boundary conditions:
— A,Cu™ (z,t) — Ayegp™0 (z,t) +
Iv? (044u(3’0) (z,t) — puH:? (z7t)> +Po(t)=0
z=0,h
(61)
w9 (z,6) =0 on’ ou(z,t) =0, (62
6ut0 (z.6) =0 o (63)
Ay (2u0 (2,8) — €030 (5,0)) Q1) =0|
66 (2,1) =0[,_g p, (64)

Again, the electrical governing equations are the same as those
obtained from the Rayleigh assumption, yielding a simplified
mechanical governing equation in the form:

Appu'®? (2,1) + Cug L, *u™0 (2,1) =
ApéDu(Q’O) (z,t) + L2 pu®? (2,t)  (65)

The solution of (65) can be written in the form:

u(z,t) =
(Aule_iklz + Buleiklz + Auze—ikgz 4 Bu2eik2z) eiwt
(66)
where
K2, = pLw? — A,C" — A,

_ o 2
\/4APC44IPV2pw2 + (ApCD + A%ez — IpVQpUﬂ)
2044Ipl/2

+
(67)

As with the Rayleigh case, the electrical and mechanical
interface matching conditions can be used to construct the
scattering matrix. The main difference is the additional two
mechanical boundary equations introduced in (61-63).

The interface matching equations could then be arranged in
matrix form:

T

M; [By By B, Au Bu Auw Byl

M, [A; Ay A

(68)
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where, in this case, M; and My are (7x7) and (7x3) system
matrices. The scattering matrix is then given by:

S = M3;M; 'M, (69)
and
1 00 00UO0O0
Msy=|0 1 0 0 0 0 0 (70)
0010000

D. Infinite plate model

When the lateral dimensions of the transducer are much
larger than its thickness (very low aspect ratio (3), the lateral
strains are neglected compared to the strain in the thickness
direction, and only the thickness vibrations of the transducer
are taken into consideration. i.e.:

u, = u(z,t)

Following a similar procedure as the thin rod case and substi-
tuting S5 = L= = w10 (2, 1) into (5) and (9) yields:

Ty = Cszub0) (2,t) + es3010) (z,1)
D3 = €33U(1’O) (Z, t) — 633¢(1’0) (Z7t)

(71)
(72)

Substituting (71) and (72) in the energy Equations (12-15) and
then into Hamilton’s principle (11) then taking the variation of
the integral with respect to u(z,t)and ¢(z,t) and performing
integration by parts yield the electromechanical governing
equations:

pu(0’2) (z,t) — Cu(20 (z,t) + 633¢(2’0) (z,6) =0 (73)
es3zu®9) (z,1) — 633¢(2’0) (z,t) =0 (74)
and boundary conditions:
— Ay (Cogu) (2,1) + 53600 (2,1)) +
Pio(t)=0 (75)
2=0,h

du (Zv t) = O|z:0,h (76)

A, (eggu(l’o) (z,t) — €330 (z,t)) -Q{t)=0 o
d¢ (h,t) = O|Z:0’h (78)

which are very similar to (25-30) in the thin rod case with
the only difference being that the system constants (Cs3,es3,
€33) are used instead of the reduced constants (C, €, €). Since
the governing equations have the same form as the thin rod
case, the same solution approach could be used to reach the
simplified mechanical governing equation in the form:

pu'®? (z,t) — CPu9 (2,1) = 0 (79)

where CP = Cs5+ ;% is the stiffness of the plate at constant
electric displacement (open-circuit conditions).

Assuming harmonic plane-wave solution in the form
u (Z, t) — Auei(wt—kz) + Buei(wt+kz) (80)

k:

w
C1

CcD

where ¢ = is the bulk speed of sound in the plate
and A,, B, are the complex amplitudes of the forward and
backward traveling displacement waves.

As with the thin rod case, the electrical and mechanical
interface matching conditions can be used to construct the
scattering matrix using (48). It should be noted that the
scattering matrix obtained in this case would be identical to
that expressed by considering both KLM and Mason’s thick-
ness expander-plate equivalent circuits since they are derived
from the same assumptions. These assumptions constrain the
applicability of these models to certain aspect ratios for the
transducer, which is investigated in the following sections.

III. RESULTING DYNAMICS AND COMPARISON OF THE
ANALYTICAL MODELS

The accuracy of the analytical model predictions is inves-
tigated through comparisons to FEM simulations and exper-
imental measurements of the impedance of PZT transducers
with different aspect ratios under different loading conditions.

A. Numerical model

COMSOL Multiphysics® [32] was used to construct a 2D-
axisymmetric model for a cylindrical piezoelectric transducer.
A coupled multi-physics model was constructed to model
the behavior of the transducer both in vacuo (air)' and
submerged in a fluid (water/oil). Piezoelectric elements which
include direct structural-electrostatic coupling were used to
discretize the transducer, and acoustic elements were used for
the medium surrounding the transducer. Both domains were
discretized using a free triangular mesh with 10 elements per
wavelength of the generated acoustic waves inside the fluid
medium. This ensures accurate sampling of the waves in all
domains, since the wavelength inside PZT for both shear and
longitudinal waves is larger than the acoustic wavelength in
air, water and oil. The boundaries of the piezoelectric and
acoustic domains were coupled to model the acoustic-structure
interaction. Furthermore, radiation boundary conditions on
the external boundaries of the medium were enforced to
minimize reflection from the boundaries and simulate an
infinite medium. The voltage of the nodes on each face of
the transducer were coupled together and connected to lumped
electrical circuit elements to model the electrical connections
to the transducer (i.e. a voltage supply when the transducer
is used as a transmitter and a load resistance when used as a
receiver).

B. Experimental validation

The electrical impedance of two cylindrical piezoelectric
transducers, manufactured by Steiner and Martins inc., were
measured both in air and in oil using a Solartron SI 1260
impedance analyzer. Since the impedance of air is much
smaller than that of piezoelectric ceramics, measurement in
air represents free boundary conditions on the transducer. Oil,
being an electrically non-conductive fluid, was selected to

Note that for these stiff piezoelectric transducers, air (in the experiments)
is a good approximation of in vacuo condition.
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avoid adding insulating layers to the transducer which might
have affected its performance. The dimensions of the first
transducer were 10mm in diameter and 25mm in height
(8 = 5) to represent a moderately thick rod, while the
second one had a 14mm in diameter and 12mm in height
(8 = 1.7) representing a cylinder of moderate diameter to
height. Both transducers were made of a modified PZT-5
with a thin layer of sliver electrodes on each circular face.
Thin wires were soldered to the edge of each electrode to
connect the transducers to the signal analyzer. The same wires
were used to suspend the transducers both in air and in oil.
The impedance was recorded at each frequency and averaged
over an integration time of 0.2s with a linear frequency
spacing of 500 Hz. The mass density and dielectric permittivity
of the transducers were measured experimentally, and the
piezoelectric and elastic constants of the transducers material
were identified using a least squares regression algorithm to fit
the FEM to experimental impedance measured for the § = 1.7
transducer in air. The measured/identified material properties
are summarized in Table I.

TABLE I
MEASURED/IDENTIFIED MATERIAL PROPERTIES OF MODIFIED PZT-5

Property| p Ci1 Ci2 C33 Caa e31 €33 €11/€o €33/€0 Qm
Unit kg/m® GPa GPa GPa GPa C/m*> C/m?
Value | 7560 139 92 107 22 —7.2 19 1460 1064 156

C. Electrical impedance in air

Figure 3 shows the magnitude plot of the electrical
impedance in air for both transducers. As mentioned previ-
ously, for a stiff piezoceramic, as in the cylinders and thick
disks in this work, air scenario is approximately in vacuo
condition. The results obtained experimentally are compared
to that obtained using the numerical and the different analytical
models. The boundary conditions for the transducer in air
resembles a free-free boundary in the analytical and FEM
models. To obtain the impedance of the transducer using FEM,
a voltage source was connected between the two electrodes
of the transducer, and natural free boundary conditions were
applied to all surfaces of the transducer. The results of the an-
alytical model were generated using Qucs open source circuit
simulation package [33]. A voltage source was connected to
the electric port (port 3) of the scattering matrix (evaluated
from (48) and (69)) and short circuit (zero impedance) was
connected to the acoustic ports (ports 1 and 2). To find the
impedance for both cases, the applied voltage was divided by
the electric current flowing to the transducer.

For the S = b transducer (Figure 3a), an excellent agree-
ment is observed between the experimental results and FEM,
Rayleigh and Bishop models. The thin rod model for this as-
pect ratio predicts 2% higher resonance and anti-resonance fre-
quencies. This indicates that the effects of lateral inertia cannot
be neglected for this aspect ratio or lower. The predictions of
both Rayleigh and Bishop models are quite similar, with the

- = =Thin rod
Rayleigh
- - = Bishop

200

50 100 150
Frequency [kHz]

Fig. 3. Comparison of the electrical impedance in air for two cylindrical
transducers with aspect ratios (a) 8 = 5 and (b) 5 = 1.7. Experimental results
are compared with those estimated numerically using FEM and analytically
using thin rod, Rayleigh and Bishop rod theories.

relatively simplified Rayleigh model producing slightly more
accurate results. This behavior is expected for relatively thin
rods, since the Rayleigh model tends to better approximate the
FEM prediction of a continuous cylinder at low frequencies
(around the first mode of the transducer) while it deviates more
quickly for higher frequencies [29].

For the § = 1.7 transducer (Figure 3b), only the FEM
model perfectly matches the experimental impedance, while
all the analytical models predict higher values for the first
thickness resonance (95kHz) of the transducer. While the
thin rod approximation is clearly not appropriate anymore for
this aspect ratio, predictions of the Rayleigh and Bishop only
deviate 3% higher than the FEM value. The analytical models
fail to capture the first radial resonance appearing around
(146 kHz). This is because all the investigated theories are pure
longitudinal theories (with one kinematic variable in the end)
and even though the effects of lateral inertia are accounted
for in Rayleigh and Bishop models, lateral modes are still
not considered in the kinematics of the problem. For this
aspect ratio, the lateral and longitudinal modes appear at close
frequency ranges, such that more complicated coupled modes
start to appear. The accuracy of the analytical predictions
when changing S is investigated in Figure 4. The resonance
frequency of the first thickness mode is plotted against 3
while keeping the transducer height h, = 12mm constant.
As [ approaches one, the effects of lateral inertia start to
become more prominent as evident from the shift in the FEM
results. Since the Rayleigh and Bishop theories include these
effects, they follow the same trend predicted by the FEM up to
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[ < 2, where the effects of lateral resonance cause an dramatic
increase in the error of both models compared to FEM.

_ 120 : 10
N
T
4
= 110k 18
bﬁ
g 100} S
Q =
g ——FEM g
g 90t 14 3
“é ——Thin rod
| %0 Rayleigh| | 5
g Bishop
é ~~~~~~~

70 — —=0

8 10

Fig. 4. In-air resonance frequency of the first thickness mode of a PZT
transducer ( hp = 12 mm) with the variation of the aspect ratio 3. Frequency
values are shown in solid lines, and percentage errors relative to FEM are
shown in dashed lines of the same color.

D. Electrical impedance in oil

For most practical applications, thickness mode transducers
are rarely used in air due to the large impedance mismatch
between PZT and air. In many applications, either one face of
the transducer or the entire transducer is embedded in a solid
or liquid domain which would change the dynamic response
of the transducer. To investigate the validity of the analytical
models in such conditions, the impedances of the investigated
transducers were measured while the transducers were sub-
merged in soybean oil (c = 1465m/s and p = 917kg/m?)
[34]. To capture the effect of fluid loading, the fluid domain
around the transducer was included in the simulation and
coupled acoustic structure boundaries were applied between
the structural and acoustic domains.

For the presented analytical models, the presence of the
transducer in a fluid domain is accounted for using the
unbaffled acoustic radiation impedance Z,.,4 present on the
two acoustic ports. The value of this impedance represents the
effect of the fluid on the two circular faces of the transducer.
This is compared to the simpler baffeled radiation impedance
case, where the circular face of the transducer is surrounded
by a hard baffle, i.e the transducer is radiating into only a
half-space.

The radiation impedance appearing on a circular radiator
depends mainly on the relation between the wavenumber
inside the fluid (k,,) and the radius of the radiator (a). Simple
approximate formulas for the unbaffled radiation impedance
only exist for the cases where k,,a < 1 and k,,a > 1. For
the investigated aspect ratios k,,a is 1.14 and 2.9 for 3 =5
and § = 1.7 respectively, which does not allow using such
approximations. In this case, the radiation impedance becomes
too complicated to be expressed analytically, since the pressure
field generated by the transducer is not only dependent on
the circular face, but is also affected by those generated from
the lateral side as well as the back face of the transducer.
Neglecting the interactions between the back and lateral sides
of the transducer, the radiation impedance can be estimated

from [35]. The resulting formula is complicated, and usually
normalized plots [36] are used directly instead of the formula
itself.

Effect of fluid loading on the electrical impedance of both
transducers is shown in Figure 5. For both transducers, a
very good agreement is observed between the experimental
and FEM results. Since lateral fluid loading is neglected,
the analytical models predict higher/sharper resonance values
when the value of 3 is small enough for lateral stresses to
be substantial, but not too small that the lateral surface area
becomes negligible. Generally, for 5 > 10 or 5 < 0.1, the
effect of lateral fluid loading is very small and could be safely
ignored.

|z (2]

- = =Thin rod
Rayleigh
- — —-Bishop

40 50 60 70 80 90
Frequency [kHz]

Z| €]

200

50 100 150
Frequency [kHz]

250

Fig. 5. Comparison of electrical impedance in oil for two cylindrical
transducers with aspect ratios (a) S=5 and (b) S=1.7. Experimental results
are compared with those estimated numerically and analytically.

IV. EFFECT OF ASPECT RATIO ON THE PERFORMANCE OF A
THICKNESS-MODE TRANSMITTER

When the transducer is operating as a transmitter, the main
design objective is to provide directional focused ultrasonic
waves at the maximum allowed level towards the receiver.
Usually, within practical limitations, the size of the transmitter
is less constrained than the size of the receiver. Also, the
boundary conditions of the transmitter (side loading/backing)
are often easier to control than those of the receiver. For
resonant operating transducers, surrounding the back and sides
of the transducer with air seems to be the best approach
to maximize the energy generated at the front face of the
transmitter [20], [37]. For many energy transfer applications
like biomedical implementations and those involving solid
(e.g. metal) walls, this represents the easiest approach as
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Fig. 6. Effect of aspect ratio on the average normal surface velocity of the transducers. The insets show surface plots of the distribution of the surface velocity
in the axis direction of the transducer (z-direction). In all cases, the applied electric field is the same (1kV /m).

the transmitter is usually naturally surrounded by air. Con-
sequently, the transmitter is connected to the medium through
one face only, which makes it easy to create a hard baffle
around this face to maximize the energy transferred towards
the receiver, and improve the directionality of the generated
acoustic beam. This also facilitates the analytical modeling
of the transmitter since free boundary conditions could be
assumed on the back and sides of the transducer. The cou-
pled performance of the transducer is then easily analyzed
analytically by connecting a voltage source to the electrical
port (port 3), assuming one of the acoustic ports (port 1) to
be free (short circuit/zero impedance) and applying the baffled
piston radiation impedance to the other acoustic port (port 2).
The radiation impedance of a baffled piston (Z,44) is readily
available in literature in the form [38]:

Jl (Zk;ma) ,Hl (kaa)>

kmna kn.a @1
where J; and H; are the first order Bessel and Struve func-
tions. The surface velocity of port 2 represented by the current
flowing through Z,.,; could then be used to estimate the
pressure field outside the transducer by solving the Rayleigh
integral [38]:

Zrad = Zm (1 -

wpmU, / e~ thm B
27'[' ds R

The effect of aspect ratio on the performance of the transducer
could be evaluated using two approaches: the height of the
transducer could be fixed, and hence its resonance frequency,
while its radius is varied to change the aspect ratio. This means
that the volume of the transducer would change as its aspect
ratio changes. Another approach would be to keep the volume
of the transducer fixed and vary the aspect ratio changing

P(r,z) = ds (82)

the relative values of both its radius and its thickness. Since
the efficiency of receivers and energy harvesters is usually
characterized by the output power per unit volume of the
material, the second approach will be followed. A cylindrical
transducer with constant volume of 1cm?® made of modified
PZT-5 is considered. The aspect ratio is varied from g = 10
(thin rod case) to 5 = 5 (thick rod) to 5 = 1 (comparable
height to radius cylinder) to 5 = 0.1 (thick plate).

All the analytical models considered in this work assume
that the velocity across the face of the transducer is constant.
In general, this is not perfectly accurate as the longitudinal
velocity of the surface varies with the radius of the transducer.
This behavior is difficult to capture analytically but could
be captured in the FEM simulation. In order to compare the
analytical predictions with the FEM ones, the average surface
velocity of the transducer U, is compared in both cases.

Figure 6 shows the effect of aspect ratio of the transducer
at constant volume on the average surface velocity of its face
when generating ultrasonic waves in water. For all transducers,
the electric field applied to the transducer is kept constant at
1kV/m (as a convenience) which corresponds to an applied
voltage v =~ 32,20,7,2V for aspect ratios = 10,5,1,0.1
respectively.

Since the fluid loading of the domain is only applied to the
circular face of the transducer, the analytical models capture
the effect well for thin and moderately thick rods (5 = 10, 5)
as shown in Figure 6a and Figure 6b. For moderately thick
plates (5 = 0.1), the infinite plate approximation captures the
resonance of the plate; however, it tends to overestimate the av-
erage surface velocity of the transducer as shown in Figure 6d.
This happens because, for thick plates, the higher order radial
modes affect the first thickness mode, yielding a non-uniform
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normal velocity on the surface of the transducer as shown
in the inset of Figure 6d. Keeping the same thickness and
decreasing the aspect ratio further to 8 = 0.01 (also Figure 6d)
converges towards the thin plate (infinite plate) approximation;
however, this aspect ratio might not be practical especially for
air backed transducers. For 5 = 1 (Figure 6¢) both lateral
and longitudinal modes are highly coupled yielding inaccurate
estimations of the normal surface velocity for both the thin
plate and Bishop approximations. The longitudinal mode is
still dominant in this aspect ratio, as shown in the inset of
Figure 6c¢; however, the radial and longitudinal mode coupling
results in lower overall surface velocity for this aspect ratio
for all the modes.

The nearfield pressure plots at resonance calculated using
the FEM for the considered aspect ratios are summarized in
Figure 7. As the pressure directivity is only controlled by
the relationship between the wavelength inside the medium
and the radius of the radiator k,,a, it comes as no surprise
that the directivity of the transducer improves with reducing
B. For the considered aspect ratios, k,,a at resonance varies
between k,,a = 0.6, 1, 3.6, and 95.5 respectively. This shows
that, although the average surface velocity for the thin rod
case is relatively higher compared to the other cases, the
generated pressure field is almost spherical, and the generated
pressure diverges in an open medium making it less suitable
for this particular application and perhaps more suitable for
applications where the waves could be guided to the receiver
end.
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Fig. 7. Effect of aspect ratio on the near field sound pressure level (SPL)
generated by the baffled transmitter estimated using FEM. The color contour
inside the transducer represents the normalized velocity in the axial direction.

V. EFFECT OF ASPECT RATIO ON THE PERFORMANCE OF A
THICKNESS-MODE RECEIVER

We consider the case in which the receiver is completely
submerged in an unbounded medium. To focus the analysis on
the performance of the transducer, a uniform incident plane
wave with an amplitude of P, = 1kPa is assumed, and
only normal incidence on the circular face of the transducer
is considered. Similar to the transmitter case, a constant
volume of 1cm® of modified PZT-5 and the same aspect
ratios are considered. The load resistance connected across
the electrodes of the transducer is varied across a wide range
of resistance values to capture optimum load resistance for
maximum power output. The frequency of excitation for each
aspect ratio is varied around the expected first longitudinal
mode of the transmitter.

The receiver case presents a challenge for the analytical
models considered here for all aspect ratios. This is because,
for rods, fluid loading and pressure incident from the side
face cannot be neglected, and for plates, higher order radial
modes appear alongside the thickness mode. For the cases
where 8 = 1, this is even more involved since the pressure
field around the transducer becomes too complicated beyond
any analytical approach to the problem. Exceptions to these
issues are the extreme cases where the transducer is a very
thin long rod (8 > 1) or a very large thin plate (8 < 1);
however, these cases are of limited practical importance for a
single thickness mode receiver.

A numerical approach is the best approach to tackle the
receiver problem. The FEM model results for the output
power for different aspect ratios are shown in Figure 8. For
each aspect ratio, the load resistance was varied to ensure
that the peak power output of the receiver is captured. It is
observed that as [ decreases, the optimum load resistance
decreases. This is because the capacitance and resonance
frequency of the transducer increases with reduced values of
B which decreases the effective electrical impedance of the
transducer. It should be noted that for 5 = 1 case, a different
trend for the power output is observed when the resistance
is higher than the optimum value of 1k{2. Multiple thickness
and radial modes are coupled for this aspect ratio, and they are
affected by the electromechanical coupling differently. Modes
which are better coupled to the electrical domain tend to shift
to higher frequencies as the connected resistance increases
causing increased bandwidth, but lower amplitude.

The maximum absolute power output among all the consid-
ered cases was that of the lowest value for 5 (Figure 8d), since
the normal area to the incident acoustic intensity is the largest
for this case. One might also consider the ratio of the output
electric power (II,) to the acoustic power incident normal to
the transducer face (II;):

II; = Bl Bk 28

2pmCm
where P; is the pressure amplitude of the incident acoustic
wave. In this case, the performance of the rod transducer
(Figure 8a,b) is found to be better than that of the low (
case (Figure 8d). The output power for higher values of f3 is
in fact higher than the incidence acoustic power on the front
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Fig. 8. Effect of the aspect ratio on receiver power output of RX. The transducers are submerged in water and subjected to incident plane harmonic waves

of amplitude (1 kPa) and the power output under different values for the load resistance is estimated using the FEM. The normalized displacement amplitude
of the transducers are shown in the insets.
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normalized displacement amplitude of the transducers are also shown.
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face of the transducer. This can be explained by considering
Figure 9, where the power output of the submerged transducer
is compared to a flushed transducer where the medium is
coupled to the transducer from the front face only. For the
B8 = 10 case, the output power is much higher in the
submerged case, when it is compared to the flushed case. This
indicates that the acoustic power is not captured by the front
face only, but also the lateral and rear faces of the transducer.
Additionally, the intensity streamlines (shown in the insets)
indicate that the area of the effective acoustic power captured
by this aspect ratio is larger than just the normal face area of
the transducer. This can be explained by comparing the lateral
dimensions of the transducer to the incident wavelength. Since
kma < 1 for this case, the transducer is effectively a point
receiver, and its directivity is almost spherical as shown in the
transmitter case (Figure 7a). In comparison, for the § = 0.1
case (Figure 9a), the acoustic power from the submerged case
is less than the flushed case. This results from the fact that for
the submerged case, the acoustic power is only incident from
the front face of the transducer and a portion of it is radiated
from the back face as expected when k,,a > 1. Another
aspect to consider is the strength of the longitudinal mode,
and how well it is excited by the incident acoustic waves.
When considering the maximum absolute power output for
the 5 = 5 case, we find that it is smaller than the § = 10
case even though it has higher normal area intercepting the
incident acoustic waves. This is because the longitudinal mode
for higher S values is less coupled to the lateral motion and
thus the incident acoustic waves are converted more efficiently
into longitudinal motion and hence generates more electric
power. It also explains the degraded peak power output of the
B = 1 case where the longitudinal and lateral motions are
strongly coupled, and no dominant mode is observed. As a
result, peak power output is smaller compared to all the other
cases.

VI. CONCLUSIONS

Several continuum analytical models for estimating the
thickness-mode dynamics of a piezoelectric transducer with
a cylindrical shape have been investigated with a focus on the
effect of aspect ratio. When the radius of the transducer is
very small (i.e. 5 > 10), the thin rod analytical model can be
used to predict the surface velocity of the transducer around its
resonance frequency. The Rayleigh and Bishop rod models can
be used to predict the surface velocity of rod transducers with
(8 > 3) around their resonance frequency given that the lateral
sides of the transducer are not fluid loaded. When the diameter
of the transducer is comparable to its length (8 ~ 2), the
longitudinal and lateral motion/modes are strongly coupled,
and they become difficult to model analytically. Only when the
radius of the transducer is very large compared to its thickness
(8 < 0.1) that the thin plate thickness vibration continuum
model, can be used to describe behavior of the transducer.
All these analytical models cannot predict the effect of fluid
loading on the lateral sides of the transducer, which only
becomes significant when the diameter of the transducer is
comparable to its length. The analytical models are also not

accurate for modeling the fluid loaded transducer except for
cases with extreme aspect ratios when (8 > 1 or § < 1).

For receiver applications of the transducers, the electric
power generated by a rod like receiver (8 = 10) was higher
than acoustic power incident on its front face. The effective
receiving area of the transducer was higher than the normal
area to the incident acoustic wave. This indicates that arrays of
rod like transducers might be more efficient than a plate like
receiver of the same size. Also, since the directivity of the rod
like receiver is almost spherical, it would be less sensitive to
variations in the angle of incidence of the acoustic beam (e.g.
due to misalignment of the transmitted beam with respect to
the receiver axis), making it a more effective omnidirectional
receiver.
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